Title
HARMONIC-ERROR-ANALYSIS MEASUREMENTS OF DIPOLE AND QUADRUPOLE MAGNETS AT LAWRENCE BERKELEY LABORATORY

Permalink
https://escholarship.org/uc/item/00q5k5b1

Author
Green, M.I.

Publication Date
1987-03-01
Engineering Division

HARMONIC-ERROR-ANALYSIS MEASUREMENTS OF DIPOLE AND QUADRUPOLE MAGNETS AT LAWRENCE BERKELEY LABORATORY

M.I. Green, P.J. Barale, D.H. Nelson, and D.A. Van Dyke

March 1987

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
HARMONIC-ERROR-ANALYSIS MEASUREMENTS OF DIPOLE AND QUADRUPOLE MAGNETS AT LAWRENCE BERKELEY LABORATORY*
M. I. Green, P. J. Barale, D. H. Nelson, and D. A. Van Dyke
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

Abstract

Error harmonics are detected using slowly rotating search-coil arrays feeding a digital integrator. The fundamental signal is detected during the first rotational cycle. The search-coil arrays are reconfigured to "buck" the fundamental and lower harmonics during the second rotational cycle, allowing the measurement of higher harmonics with excellent resolution. Data are first drift corrected, then harmonic analyzed using the fast Fourier transform technique. The measurements, data processing, and generation of both tabular and graphic output require about 80 seconds. Data are later postprocessed using spreadsheets allowing easy manipulation and comparison of measurements during a test series and between magnets. Hardware and software will be described. Accuracy, precision, and resolution will be discussed, and the measurement technique for Superconducting Super Collider (SSC) model magnets will be described.

Introduction and Overview

At the Lawrence Berkeley Laboratory (LBL) harmonic-error analysis of accelerator beam-line magnets is used to predict the behavior of particle beams and to screen substandard magnets (and sometimes facilitate corrective action.) Our measurements are routinely used as diagnostics in the development of Superconducting Super Collider (SSC) model dipoles and will be used to diagnose SSC model quadrupoles.

The quadrupole and dipole systems that we have developed are just two configurations of the LBL general-purpose magnetic measurements Data Acquisition System (DAS). The DAS is also used for field mapping, permeability measurements, and wiggler magnet tuning.

Both the dipole and quadrupole systems generate, in "real time" (approximately 80 seconds), magnet test and performance parameters. The test parameters include: date and time of run, magnet identification, search-coil identification and configuration, test-series and run descriptions, the operator's name, shunt resistances, data-set identification, initial, final, and average currents, period of revolution, and voltage-to-frequency converter range. All of the preceding, plus raw up-down counter outputs, are saved in a binary file on a hard disk. The signal strength for each harmonic is printed as a guide to the significance of the data. Magnet performance parameters that are generated in real time include field strength, transfer function, and the magnitude and phase of each harmonic relative to the fundamental. In addition, the dipole system prints out normal and skewed harmonics relative to the dipole. Magnet performance parameters are not saved, since they can be derived from the saved test parameters. Upon completion of measurements, the data on hard disk are transferred to floppy disks for archiving.

The dipole system can be set up to run in an automatic mode in which the run options are accessed from a file and the measurement cycle repeats after a specified delay between data sets.

Dipole Program Major Options

The operator is allowed the choice of two search-coil arrays, each consisting of three search-coil pairs. In response to options selected by the operator, coils may be connected to measure the central 10-cm length of the dipole, either end, or the full length of the magnet. The operator may also specify whether the search coil is cryogenic, in which case the dipole program incorporates a shrinkage factor into the calculation of the sensitivity array for the search coil.

The quadrupole program incorporates similar options.

The dipole system can be set up to run in an automatic mode in which the run options are accessed from a file and the measurement cycle repeats after a specified delay between data sets.

Dipole Program Major Options

Major Options

1) no power supply for permanent-magnet quads, 2) operator manually sets and enters current, 3) operator sets current and enters current shunt potential, 4) operator sets current but computer monitors shunt potential, 5) automatic sequencing of power-supply current with monitoring of both shunt and quadrupole magnet potentials, and 6) the same as 5) except that the magnet power supply is turned off while the search coil is rotating backwards. For options 5 and 6, the operator can program magnet conditioning cycles and specify up to 30 currents for sequential measurements of strength and harmonics.

Measurement Cycle Description

The changing flux linkage between a slowly rotating search coil array and a stationary magnetic field generates electrical potentials. A low-noise search-coil switching module (SCSM), inputs selected search-coil-potential combinations to a bipolar voltage-to-Frequency converter (V/F), which feeds an up-down counter. This combination of a V/F and up-down counter forms a digital integrator. Pulses from an incremental optical encoder mounted on the shaft of the rotating search coil latch the contents of the up-down counter into a buffer and also produce a CAMAC "LAM" interrupt that informs the computer that it should read the buffer. We sample the up-down counter buffer 129 times for each 360-degree forward revolution, and then the search coil rotates backwards in preparation for another cycle. The first and last samples are at the same azimuthal coil position and are used to "drift correct" the raw data, providing 128 data points for fast Fourier analysis. The first forward revolution is essentially unloaded, so the second forward revolution, the output of pairs of search coils is connected in series opposition. The coils are designed so that when connected in series opposition they have good sensitivity for the higher harmonics yet the fundamental signal is dramatically reduced (bucked out). This allows high-resolution measurement of the harmonics. Following both forward cycles, as the search coil is rotating backwards, the raw data are saved on a hard disk, drift corrected, plotted, Fourier analyzed, and converted to physical quantities that are printed and archived.

*This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, High Energy Physics Division, U. S. Dept. of Energy, under Contract No. DE-AC03-76SF00098.

Abstract

Error harmonics are detected using slowly rotating search-coil arrays feeding a digital integrator. The fundamental signal is detected during the first rotational cycle. The search-coil arrays are reconfigured to "buck" the fundamental and lower harmonics during the second rotational cycle, allowing the measurement of higher harmonics with excellent resolution. Data are first drift corrected, then harmonic analyzed using the fast Fourier transform technique. The measurements, data processing, and generation of both tabular and graphic output require about 80 seconds. Data are later postprocessed using spreadsheets allowing easy manipulation and comparison of measurements during a test series and between magnets. Hardware and software will be described. Accuracy, precision, and resolution will be discussed, and the measurement technique for Superconducting Super Collider (SSC) model magnets will be described.

Introduction and Overview

At the Lawrence Berkeley Laboratory (LBL) harmonic-error analysis of accelerator beam-line magnets is used to predict the behavior of particle beams and to screen substandard magnets (and sometimes facilitate corrective action.) Our measurements are routinely used as diagnostics in the development of Superconducting Super Collider (SSC) model dipoles and will be used to diagnose SSC model quadrupoles.

The quadrupole and dipole systems that we have developed are just two configurations of the LBL general-purpose magnetic measurements Data Acquisition System (DAS). The DAS is also used for field mapping, permeability measurements, and wiggler magnet tuning.

Both the dipole and quadrupole systems generate, in "real time" (approximately 80 seconds), magnet test and performance parameters. The test parameters include: date and time of run, magnet identification, search-coil identification and configuration, test-series and run descriptions, the operator's name, shunt resistances, data-set identification, initial, final, and average currents, period of revolution, and voltage-to-frequency converter range. All of the preceding, plus raw up-down counter outputs, are saved in a binary file on a hard disk. The signal strength for each harmonic is printed as a guide to the significance of the data. Magnet performance parameters that are generated in real time include field strength, transfer function, and the magnitude and phase of each harmonic relative to the fundamental. In addition, the dipole system prints out normal and skewed harmonics relative to the dipole. Magnet performance parameters are not saved, since they can be derived from the saved test parameters. Upon completion of measurements, the data on hard disk are transferred to floppy disks for archiving.

The dipole system can be set up to run in an automatic mode in which the run options are accessed from a file and the measurement cycle repeats after a specified delay between data sets.

Dipole Program Major Options

The operator is allowed the choice of two search-coil arrays, each consisting of three search-coil pairs. In response to options selected by the operator, coils may be connected to measure the central 10-cm length of the dipole, either end, or the full length of the magnet. The operator may also specify whether the search coil is cryogenic, in which case the dipole program incorporates a shrinkage factor into the calculation of the sensitivity array for the search coil.

The dipole system can be set up to run in an automatic mode in which the run options are accessed from a file and the measurement cycle repeats after a specified delay between data sets.

Dipole Program Major Options

Major Options

1) no power supply for permanent-magnet quads, 2) operator manually sets and enters current, 3) operator sets current and enters current shunt potential, 4) operator sets current but computer monitors shunt potential, 5) automatic sequencing of power-supply current with monitoring of both shunt and quadrupole magnet potentials, and 6) the same as 5) except that the magnet power supply is turned off while the search coil is rotating backwards. For options 5 and 6, the operator can program magnet conditioning cycles and specify up to 30 currents for sequential measurements of strength and harmonics.

Measurement Cycle Description

The changing flux linkage between a slowly rotating search coil array and a stationary magnetic field generates electrical potentials. A low-noise search-coil switching module (SCSM), inputs selected search-coil-potential combinations to a bipolar voltage-to-Frequency converter (V/F), which feeds an up-down counter. This combination of a V/F and up-down counter forms a digital integrator. Pulses from an incremental optical encoder mounted on the shaft of the rotating search coil latch the contents of the up-down counter into a buffer and also produce a CAMAC "LAM" interrupt that informs the computer that it should read the buffer. We sample the up-down counter buffer 129 times for each 360-degree forward revolution, and then the search coil rotates backwards in preparation for another cycle. The first and last samples are at the same azimuthal coil position and are used to "drift correct" the raw data, providing 128 data points for fast Fourier analysis. The first forward revolution is essentially unloaded, so the second forward revolution, the output of pairs of search coils is connected in series opposition. The coils are designed so that when connected in series opposition they have good sensitivity for the higher harmonics yet the fundamental signal is dramatically reduced (bucked out). This allows high-resolution measurement of the harmonics. Following both forward cycles, as the search coil is rotating backwards, the raw data are saved on a hard disk, drift corrected, plotted, Fourier analyzed, and converted to physical quantities that are printed and archived.

*This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, High Energy Physics Division, U. S. Dept. of Energy, under Contract No. DE-AC03-76SF00098.
plotted. For each harmonic number we print the signal magnitude and phase of the harmonic relative to the fundamental. The dipole system also prints the relative skewed and normal harmonics. We plot the unbuckled and bucked raw data versus azimuthal position and produce a semilog bar graph of the magnitude of the harmonics relative to the fundamental magnitude.

Hardware

Figure 1 is a block diagram of our hardware. A DEC LSI-11/73 microprocessor is interfaced to the rest of our equipment by means of the DEC Q-BUS. On the Q-BUS are 4 Mbytes of ram, CAMAC and GPIB interfaces, a clock calendar, a 10-Mbyte RLO2 hard Disk, a 40-Mbyte Winchester Hard disk that emulates 4 RLO2's, a DLV11ED connected to a modem attached to a phone line that allows us to communicate with other computers and/or operate the DAS remotely, and two DLV11J 4-line RS-232 interfaces. Connected to the DLV11J's are a laser printer/plotter, a LA-120 printer/terminal, an Epson dot-matrix printer, a Hewlett-Packard plotter, and several graphics terminals. NIM and GPIB modules are used for high-precision analog data acquisition. CAMAC modules are used mainly for digital I/O such as control and monitoring of motors, reading up-down counter modules, etc.

Software

We use the S & H Inc. TSX-Plus time-sharing operating system. This operating system is used on DEC PDP-11 and LSI-11 computers and operates "on top" of the DEC RT-11 operating system. This multuser system allows simultaneous data acquisition, program development, and postprocessing of data. All application programs are written in Fortran 77. Commercial software packages include DEC Laboratory Subroutines, DEC Scientific Subroutines, Tektronix Plot 10, National Instruments GPIB library, Standard Engineering CAMAC Library, S & H Inc. RTSORT, Columbia University Kermit, and Saturn Systems Inc. Spreadsheet/Graphics/Word-processing Office Automation Package.

Short structured programs are written that are primarily only calls to subroutines or groups of short subroutines. Structured programming has significantly reduced the effort necessary to design, debug, maintain, and modify complex real-time data-acquisition systems.

Data Postprocessing

A resume file that briefly describes the important test parameters for each data set is first created. Next, files consisting of a subset of the most important test and performance parameters are assembled and transported from the DAS by modem and telephone to an IBM AT personal computer, loaded into a LOTUS spreadsheet, and used to generate SSC magnet "prompt reports." LOTUS macros are used to produce reports on magnet behavior during cooldowns to ~4.3 K, warmups, decays (measurements at a single current), current sweeps (measurements while ramping the magnet current up and down), and Z-scans (measurements taken with the center 10-cm search-coil pair at various axial positions along the dipole). The output produced includes a table of magnet data (dipole field, transfer function, major harmonic values) and a series of graphs.

Another postprocessing function uses a local (on the DAS) spreadsheet and graphics package (Saturn Calc and Saturn Graph). All test and performance parameters are available in two standard spreadsheets, one of magnet performance parameters and one of test parameters. The test-parameter spread sheet allows the scanning of data sets for problems such as high drift, unusual module configurations, etc. This system is used to examine particularly interesting real-time runs and to generate graphs and tables used in routine quadrupole-magnet and specialized dipole-magnet reports.

Performance

The SCRM-V/f combination provides 22 ranges covering seven decades from 100 μV/MHz to 1000 V/MHz in a 1, 2, 5 sequence. The calibration accuracy is 0.1% on the 100-μV range and improves to 0.01% on the 10-V range.

Figure 1. Block diagram of SSC model dipole system.
The dimensions of the individual search coils are mechanically measured to ± 0.001 inches, and their areas are magnetically calibrated at room temperature to better than 0.05%. Based upon the magnetic area measurements the coils are paired, resulting in a "dipole bucking ratio" of 500 or better.

At low currents the accuracy of the LBL system is limited by noise, which ranges from approximately 100 nanovolt-seconds for the $n = 2$ (quadrupole) term, to approximately 2 nanovolt-seconds for $n = 19$. Figure 2 is a plot of the noise signal vs harmonic number obtained by a stationary 10-cm center coil pair configured in the bucking mode. Average values are represented by the line.

The reproducibility of the dipole system at 20 A and room temperature is presented in Table 1. The deviations are greater for the central field values because of the small size of the coil (10 cm long) and the resulting small signals. At SSC operating currents, the reproducibility for the sextupole term is better than 0.01 units (1 unit = 10^{-4} of the fundamental magnitude).

Improvements

As time, personnel, and funds allow, the following expansions and/or improvements are planned: 1) complete the fabrication of a cryogenic quadrupole search-coil array and interface it to the existing dipole system, 2) replace the existing 16-bit, fast Fourier transform with a double-precision version, 3) automate the axial positioning of the magnet relative to the search-coil array for making measurements of harmonic content as a function of axial position, and 4) expand the use of Saturn spreadsheet/graphics and consolidate the existing postprocessing code (to reduce the time for producing "prompt" reports).

Acknowledgments

We would like to thank Bill Gilbert, Bill Hassenzahl, and Clyde Taylor of the LBL Superconducting Group for their continuous advice and support. Klaus Halbach has been our theoretical consultant from the start. Others who have contributed to the development of our system include Les Callapp, Jim Greer, Sandy Goss, Ed Hartwig, Bill Hearn, Bob Main, Randy Michelson, Don Rondeau, Jack Tanabe, Lee Wagner, and Ron Yourd.

References

Table I. Standard Deviations of Main and Harmonic Fields for the LBL Measuring System (18 consecutive runs at 20 A).

<table>
<thead>
<tr>
<th>Search Coil Configuration (10^{-4} Tm/A)</th>
<th>Transfer Function C_2, C_3, C_4, C_5, C_6, C_7 (10^{-2} Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>End 1</td>
<td>0.5, 2.6, 2.5, 0.9, 0.8, 0.3, 0.2</td>
</tr>
<tr>
<td>Central</td>
<td>2.8, 33.2, 16.2, 9.9, 5.2, 4.9, 1.5</td>
</tr>
<tr>
<td>End 2</td>
<td>1.0, 1.5, 1.4, 0.5, 0.4, 0.2, 0.3</td>
</tr>
<tr>
<td>Integral</td>
<td>1.9, 1.8, 1.9, 1.8, 0.4, 0.3, 0.2</td>
</tr>
</tbody>
</table>

Note: C_2 refers to the amplitude at the quadrupole field at 1-cm radius.
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.