Title
Electronic structure of the iron-based superconductor LaOFeP

Permalink
https://escholarship.org/uc/item/00x1m7xw

Author
Lu, D. H.

Publication Date
2012-01-10
Electronic structure of the iron-based superconductor LaOFeP

The recent discovery of superconductivity in the iron oxypnictide family of compounds1–3 has generated intense interest. The layered crystal structure with transition-metal ions in planar square-lattice form and the discovery of spin-density-wave order near 130 K (refs 10, 11) seem to hint at a strong similarity with the copper oxide superconductors. An important current issue is the nature of the ground state of the parent compounds. Two distinct classes of theories, distinguished by the underlying band structure, have been put forward: a local-moment antiferromagnetic ground state in the strong-coupling approach12–17, and an itinerant ground state in the weak-coupling approach18–22. The first approach stresses onsite correlations, proximity to a Mott-insulating state and, thus, the resemblance to the high-transition-temperature copper oxides, whereas the second approach emphasizes the itinerant-electron physics and the interplay between the competing ferromagnetic and antiferromagnetic fluctuations. The debate over the two approaches is partly due to the lack of conclusive experimental information on the electronic structures. Here we report angle-resolved photoemission spectroscopy (ARPES) of LaOFeP (superconducting transition temperature, \(T_c = 5.9\) K), the first-reported iron-based superconductor23. Our results favour the itinerant ground state, albeit with band renormalization. In addition, our data reveal important differences between these and copper-based superconductors.

In Fig. 1 we compare the angle-integrated photoemission spectrum (AIPEES) with the density of states obtained from the local-density-approximation (LDA) band structure calculations. It is important to note that the peak near the Fermi level (\(E_F\)) is as strong as the valence band peak, in sharp contrast with the typical valence band spectrum of copper oxide superconductors, as shown in the inset of Fig. 1a. The valence band spectrum of copper oxide superconductors is characterized by a weak feature near \(E_F\) on top of a broad valence band peak, consistent with the doped-Mott-insulator picture. This clear disparity between the iron-based superconductor and the copper oxide superconductors suggests that itinerant-electron physics rather than Mott physics is a more appropriate starting point for the iron-based superconductors, at least for LaOFeP. Our data also disagree with some recent AIPEES data24–26 obtained from polycrystalline samples that show only a very small peak near \(E_F\) on top of a large valence band peak, which is reminiscent of the valence band spectra of copper oxide superconductors. This difference may be due to the surface quality of polycrystalline samples, as is often the case for oxides27. On balance, our data do not support theoretical models assuming strongly antiferromagnetic ground states (at least not those currently being formulated, albeit for the LaOFeAs system28–30), as there is no evidence in our spectra for exchange splitting of the iron \(d\)-electron states, and agreement between our valence band spectrum and the density of states calculated using such models is poorer in comparison with the density of states calculated in the LDA assuming an itinerant ground state.

More detailed information can be obtained from angle-resolved photoemission data. To understand the seemingly complex multiband electronic structure, we superimpose the LDA band structures on top of our data (Fig. 2). A quantitative agreement can be found between the angle-resolved photoemission spectra and the calculated band dispersions after shifting the calculated bands up by 0.11 eV and then renormalizing by a factor of 2.2. Note that the values of the \(E_F\) shift and the band renormalization factor are chosen to obtain the best match of the two higher binding energy bands at the \(\Gamma\) point. Although the renormalized bands using this set of parameters fit the bands near \(\Gamma\) very well, the match near the X point and the M point is less perfect. This suggests that different bands may have slightly different renormalization effects. Nevertheless, the overall level of agreement between the experiments and the calculations is significant, as nearly all features in our data have corresponding bands in the calculations, indicating that the LDA with the assumption of an itinerant ground state captures the essence of the electronic structure of this system. This again suggests that the iron-based superconductors, or at least LaOFeP, are different from copper oxide superconductors. We also note that the measured dispersions show no similarity with the band structure calculations of LaOFeAs calculated assuming an antiferromagnetic ground state31–33.

To extract more information from angle-resolved photoemission spectra, a simple analysis of momentum distribution curves is done for the high-symmetry cuts. A Fermi velocity (\(v_F\)) of 1.0 ± 0.2 eV Å (equivalent to (1.5 ± 0.3) \(\times 10^5\) m s\(^{-1}\)) is obtained for all three bands individually. For comparison, the values extracted from the LDA calculations, after taking into account the \(E_F\) shift, are 1.5 or 1.7, 1.4, and 2.4 or 3.5 eV Å for the \(\Gamma_1\), \(\Gamma_2\) and M bands, respectively. Note that two different numbers are given for both the \(\Gamma_1\) band and the M band because each contains two nearly degenerate bands. This observation demonstrates that the renormalization effects are different for different bands, as anticipated above, indicating that correlation effects are appreciable and not isotropic. However, these \(v_F\) renormalization values as well as the total-bandwidth renormalizing factor of 2.2 are comparable to those of Sr\(_2\)RuO\(_4\), which is a correlated Fermi liquid and is reasonably well described by theories using itinerant band structure as the starting point34. The corresponding electron-band masses \(m^*\) extracted from our data are, in units of the free electron mass, 1.4 ± 0.3, 4.6 ± 0.5, and 1.3 ± 0.3 for the \(\Gamma_1\), \(\Gamma_2\), and M bands, respectively. We note that the magnetic susceptibility enhancement compared with the bare-band-structure density of

1Department of Physics, Department of Applied Physics and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, California 94305, USA. 2Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. 3Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford University, Stanford, California 94305-4065, USA. 4Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6314, USA.
Figure 1 | Comparison between angle-integrated photoemission spectrum and calculated density of states. a, Valence band spectrum of LaOFeP taken with 42.5-eV photons using transmission mode (see Supplementary Information). It consists of a sharp, intense peak near the Fermi level that is separated from a number of broad peaks at higher binding energy. The inset shows the valence band of La$_2$–Sr$_{1-x}$CuO$_x$ (LSCO), for comparison. b, LDA density of states and projections onto the linear-augmented-plane-wave spheres. According to the LDA calculations, the near-E_F states have dominant iron d-state character, whereas the peaks at higher binding energy are mixtures of oxygen p states and hybridized iron d and phosphorus p states. In comparison with the calculated density of states, the near-E_F peak has a narrower width than the calculated iron d states and is pushed closer to E_F, which is consistent with the band renormalization effect discussed in Fig. 2. The valence band peaks at higher binding energy, however, are shifted towards higher binding energy, resulting in slightly larger total valence band width.

better suited to addressing the pseudogap issue by directly measuring the states near k_F. The same AIPES experiment also indicated pseudogap effects with energy scales of 20 and 100 meV in polycrystalline LaO$_{1-x}$Fe$_x$As compounds, whereas another AIPES experiment found a pseudogap of 15–20 meV in the same polycrystalline compounds. We cannot rule out the possibility of a pseudogap in arsenic-based compounds, which exhibit a spin-density-wave order in their parent compound LaOFeAs, as indicated in neutron scattering studies. However, the similarly observed 20-meV pseudogap in polycrystalline samples of both LaOFeP and LaOFeAs (ref. 28) leads us to suggest a careful re-examination as soon as single crystals of the arsenic-based compounds become available.

Finally, we consider the Fermi surface topology (Fig. 4). Three sheets of Fermi surfaces are clearly observed: two hole pockets at M and one electron pocket centred at M. Keeping in mind the nearly degenerate Γ_1 and M bands, the observed Fermi surface topology is consistent with the five sheets of Fermi surfaces predicted in band structure calculations. We note that the outer hole pocket Γ_1 originates from the hybridized iron $d_{x^2-y^2}$ and phosphorus p states, which have strong k_z dispersion. The topology of this Fermi surface sheet is sensitive to the position of the phosphorus atoms, that is, the level of hybridization, and changes significantly upon doping. Calculating the Fermi surface volume enclosed by the three pockets yields respective electron counts of 1.94, 1.03 and 0.05 for the Γ_1, Γ_2 and M pockets. Taking into account the unresolved, nearly degenerate sheets under the Γ_1 and M pockets, a total electron count of 5.0 ± 0.1 is obtained, which is smaller than the expected value of 6. This is consistent with the need to shift E_F in order to produce the best fits of the dispersion in Fig. 2. It is too early to be certain how much of
Careful examination of the data in Fig. 3 reveals another possible discrepancy in band structure comparison, namely a very weak feature around -0.07 eV near Γ (Fig. 3a) that does not seem to have a corresponding band in LDA calculations. Further investigations are required to clarify its origin. Despite these disagreements, all the expected Fermi surface pieces are observed and are in good agreement with experiments in terms of the Brillouin zone locations and signs (hole versus electron). Furthermore, the measured main dispersions agree with the calculated band structures in great detail, as shown in Fig. 2. These observations make a strong case that the itinerant band structure captures the essence of the electronic structure of LaOFeP.

In summary, our ARPES data from LaOFeP suggest that the electronic structure of this material can be described using an itinerant band approach. In comparison with copper oxide superconductors, it has three important contrasting features: it has a much higher density of states near the Fermi level; it has multiple bands and Fermi surface sheets; and it shows no apparent evidence of the pseudogap effect.

Received 31 May; accepted 11 July 2008.

3. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La$_2$(Fe$_{1-x}$Co$_x$)$_4$As$_2$ (x = 0.05-0.12) with T_c = 26 K. J. Am. Chem. Soc. 130, 3796-3797 (2008).
Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements. We thank C. Cox, S. M. Kauzlarich and H. Hope for single-crystal X-ray diffraction measurements, and H. Yao, S. A. Kivelson, R. M. Martin, S. C. Zhang and X. L. Qi for discussions. ARPES experiments were performed at the Advanced Light Source, which is operated by the US Department of Energy Office of Basic Energy Science. Work at Stanford and Oak Ridge National Laboratory was supported by the Office of Basic Energy Science, Division of Materials Science and Engineering.

Author Information. Reprints and permissions information is available at www.nature.com/reprints. Correspondence and requests for materials should be addressed to Z.-X.S. (zxshen@stanford.edu) or D.H.L. (dhlu@slac.stanford.edu).

This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.