Lawrence Berkeley National Laboratory
Recent Work

Title
MAGNETIC UNDULATOR - MODELING & MEASUREMENTS OF END EFFECTS

Permalink
https://escholarship.org/uc/item/018236k4

Author
Nelson, Donald H.

Publication Date
1980-06-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Introduction

Klaus Halbach is designing an Undulator*. He believes that theoretical calculations are adequate for predicting internal field distributions produced by Samarium Cobalt magnets that are regularly distributed and oriented above and below the plane of interest (magnetic midplane). However, end effects are more difficult to predict with high precision.

On January 20, 1980, Klaus Halbach, Michael I. Green, Bill Worthington and I met to discuss modeling the end effects due to a pair of Samarian Cobalt permanent magnets with various geometries of iron. The objective of building and measuring a model was to determine the magnitude of magnetic-induction integrals as functions of magnet position and orientation with a resolution of 25 Gauss cm.

Model for Testing Magnet End Effects

Figure 1 shows the model fabricated by Bill Worthington. The lower flat surface \(z = 0 \) represents the plane of symmetry of the undulator so that for the model, magnets need be located only above this plane. (In this model, the magnets to be symmetrically located below the midplane are represented by "images" produced by the magnets above \(z = 0 \).) Two coordinate systems are shown in Figure 1 (The cartesian coordinate system for locating the magnet relative to the iron and the cylindrical-coordinate system showing the orientation of the magnet). The parameters that were varied during the course of the model tests (at the request of Klaus Halbach) are \(\theta \), angular orientation of the magnet pair, \(h \), the height of the magnets above the midplane, and \(d \), the distance between the field-clamp and the center line of the magnet pair i.e., the axis of rotation of the magnet pair.

Test Equipment

Figure 2 shows the equipment used for these tests. The integral-coil was designed by Michael I. Green and Ivan Wood and fabricated by Faye Witharm. Figure 3 is a full-scale copy of the positive used for fabricating the coil. The effective turns-width and the effective turns-area of the integral-coil were calculated by Kathy Schiff from the numerical-control coordinate-data used for fabricating the coil. The effective turns area was also determined by Michael I. Green in an NMR calibrated magnetic-field. The calculated and measured values are listed in Figure 3.

* A device for the production of synchrotron radiation in conjunction with high-energy electrons.
Test Procedures

Changes in flux-linkage in the integral-coil are proportional to changes in magnitudes of the integral of magnetic-induction over the length of the coil. Based on the effective turns-width of the coil, I selected values for the integrating resistor and capacitor that would produce a constant of proportionality of approximately 10^{-4} Volts/Gauss cm. The flux-standard produces a constant value of flux-linkage for determining the "operational RC time-constant" of the integrator. Magnitudes of the integral ($\int B_z dy$) were measured by repeatedly moving the integral-coil between a mu-metal shield and the model.

Test Results

Figures 4-6 represent the tests conducted by Ed Cyr and me. Figure 4 represents measurements of $\int B_d l$ vs. θ for three values of d ($d = 1.27$, 2.54 & 3.81 cm) with $h = 3.61$ cm. Figure 5 represents measurements of $\int B dy$ vs. θ for extreme values of h ($h = 1.96$ cm and $h = 3.61$ cm) with $d = 2.54$ cm. Based on these preliminary results, Klaus Halbach requested that we collect the data represented in Figure 6 with $d = 1.27$ cm, $h = 1.96$, 2.49, 3.05, & 3.61 cm.

We experienced difficulty in reproducing measurements near the zero-cross-overs (i.e., the angular orientations, θ, that produced near-zero integrals). We made a series of measurements to determine the effect of magnetic-hysteresis. For the parameters $h = 1.96$ cm, $d = 1.27$ cm (see Fig. 6), we measured $\int B_z dy$ for $\theta = 150^\circ$ and 330° with each of these magnet orientations being approached from $\theta = 60^\circ$ (the maximum positive orientation) and $\theta = 240^\circ$ (the maximum negative orientation). The results which are summarized in Table I show spreads near the zero-cross-overs of 5-6% of the peak values.

<table>
<thead>
<tr>
<th>θ degrees</th>
<th>$\int B_z dy$ [103 Gcm]</th>
<th>spread (% of peak integral)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>+2.87</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>-2.71</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>-0.13</td>
<td>0.14/2.8 = 5%</td>
</tr>
<tr>
<td>240</td>
<td>-2.73</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>+2.87</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>+0.12</td>
<td>0.17/2.8 = 6%</td>
</tr>
</tbody>
</table>

Table I Hysteresis Checks - Measurements of $\int B_d s$

$h = 1.96$ cm, $d = 1.27$ cm for selected values of θ.
Discussion

On June 5, E. Hoyer, K. Halbach, I. Wood and I discussed plans for measurements of the operational undulator. Hoyer is preparing specifications for a pair of 1 m. long integral coils.

Distribution: J.W. Chin
 C.G. Dols
 M.J. Green
 K. Halbach (4)
 E.C. Hartwig/L.J. Wagner/W.H. Deuser
 E.H. Hoyer
 I.E. Wood
 Electronics Engineering Master File (2)
 Magnetic Measurements Engineering (4)

This work was supported by the U.S. Dept. of Energy under Contract DE-AC03-76SF00098.
FIGURE 1 UNDULATOR MAGNET

* SmCo$_5$ Magnet Pair - Orientation shown $\theta = 0$
MAGNETIC UNDULATOR

SKETCH

LAWRENCE LIVERMORE LABORATORY
UNIVERSITY OF CALIFORNIA

UNDULATOR END EFFECT MODEL

MAGNETS

SfeCo

Integral-Coil

mu-metal shield

FLUX STANDARD

ELECTRONIC INTEGRATOR

VOLTOMETER

DEVICE

Model
Magnets
Coil
Flux Standard
Integrator
Voltmeter

IDENTIFICATION

LBL
SmCo
L-47
SLFS 40.01
Mod 71 S/II 2
Keithley Mod 177

NOTES

2 ea.

NW = 20.76 (cm)

\(\phi = 0.0105 \) (wb)

\(R = 19.6 \) (k\(\Omega \))

C = 0.1 (\(\mu \)F)

Attenu = 830

S/II = 10450

Figure 2 Test Equipment
Figure 3 Artwork used for fabricating coil L-47

Calculated based on design parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_A, turns area (cm²)</td>
<td>417.75</td>
</tr>
<tr>
<td>N_V, turns width (cm)</td>
<td>20.76</td>
</tr>
</tbody>
</table>

Measured

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_A, turns area (cm²)</td>
<td>413.0</td>
</tr>
<tr>
<td>N_V, turns width (cm)</td>
<td></td>
</tr>
</tbody>
</table>

(number of turns: 20)
\[-f B_z dy\]
\((10^3 \text{ Gauss cm.})\)

U. INDULATOR - MODEL OF END EFFECTS

Data: '80 Feb. 19 DHM, EAC
Drawn: '80 March 12 KGS

\(h^{**} = 3.61 \text{ cm.}\)

*\(d\) is the distance of the magnet center from the field clamp.

\(h\) is the distance of the magnet center above \(z = 0\) plane.

(See Figure 3)

FIGURE 4
UNDULATOR - MODEL OF END EFFECTS

Data: '80 Feb. 15 & 21 DBH, EAC
Drawn: '80 March 12 KGS

d = 2.54 cm.

LEGEND

<table>
<thead>
<tr>
<th>Symbol</th>
<th>(h** (cm))</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>1.96</td>
</tr>
<tr>
<td>△</td>
<td>3.61</td>
</tr>
</tbody>
</table>

d is the distance of the magnet center from the field clamp.

h is the distance of the magnet center above \(z = 0\) plane.

(See Figure 3)

FIGURE 5
UNIDOLATOR - MODEL OF END EFFECTS

Data: '30 Feb. 19-26 DINN, EAC
Drawn: '30 March 12 KGS

\[d^* = 1.27 \text{ cm.} \]

d is the distance of the magnet center from the field clamp.

\[h^{**} \] is the distance of the magnet center above \(z = 0 \) plane.

(See Figure 3)
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.