Title
Thermodynamics and magnetism in U1-xThxBe 13-yBy

Permalink
https://escholarship.org/uc/item/01h009zz

Journal
Journal of Applied Physics, 69(8)

ISSN
0021-8979

Authors
Heffner, RH
Beyermann, WP
Hundley, MF
et al.

Publication Date
1991-12-01

DOI
10.1063/1.347972

License
CC BY 4.0

Peer reviewed
Thermodynamics and magnetism in $U_{1-x}Th_xBe_{13-y}B_y$

P-10, MS K764, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

P. Birrer, C. Baines, F. N. Gygax, B. Hitti, E. Lippelt, H. R. Ott, and A. Schenck

ETH, Zurich, c/o Paul Scherrer Institute, Villigen, Switzerland

D. E. MacLaughlin

Physics Department U. C. Riverside, Riverside, California 92521-0413

We report specific heat and µSR measurements on Th ($x = 0.019$) and/or B ($y = 0.03$) substituted UBe$_{13}$. The specific heat data show that either Th or B substitution reduces the Kondo temperature T_K and increases the entropy at the superconducting transition by almost 20%, indicating an enhanced density of states. However, whereas µSR shows clear evidence for magnetic correlations for Th substitutions ($0.019 < x < 0.043$), no magnetism is observed for B substitutions. The enhanced specific heat jump in the B-substituted material is associated with a change in the superconducting properties as T_K is reduced.

I. INTRODUCTION

The ground state properties of heavy electron (HE) compounds are often very sensitive to doping with small quantities of impurity atoms. Perhaps the most unusual case is that of $U_{1-x}Th_xBe_{13}$, where Th substitution produces both a nonmonotonic depression of the superconducting transition temperature T_c and a second phase transition below T_c for $0.019 < x < 0.043$. Recent muon spin rotation (μSR) experiments have demonstrated that this lower phase possesses small magnetic moments, of order $10^{-3} - 10^{-2} \mu_B$/U-atom. Thus the magnetism and superconductivity are closely coupled in this system. Recently it was reported that substitution of B for Be in UBe$_{12.97}B_{0.03}$ drastically increases the specific heat jump at T_c, and it was surmised that magnetic correlations were also produced in UBe$_{12.97}B_{0.03}$, as in (U,Th)Be$_{13}$. In this paper we report μSR and specific heat measurements in $U_{1-x}Th_xBe_{13-y}B_y$ for $x = 0.019$ and $y = 0.03$, to further investigate these phenomena.

The μSR experiments were carried out in zero applied field between temperatures 0.05 and 1.7 K at the low-temperature facility (LTTF) of the Paul Scherrer Institute. The samples for μSR were arc-melted polycrystalline ingots about 1 mm thick with 2 cm2 cross-sectional area. The specific heat data were collected between $T = 0.3$ K and 20 K using a small-mass calorimeter.

II. SPECIFIC HEAT DATA

Figure 1 shows the temperature dependence of the specific heat for pure UBe$_{13}$, UBe$_{12.97}B_{0.03}$ (UBeB), and U$_{0.981}Th_{0.019}Be_{12.97}B_{0.03}$ (UThBeB) between 0.3–20 K. The UBe$_{13}$ data show the characteristic features of a rise in C/T below about 6 K associated with the Kondo resonance, followed by a superconducting specific heat anomaly with an onset temperature $T_c \approx 0.91$ K. (The midpoint of the rise in C/T occurs at about 0.82 K.) The UBeB data, although qualitatively similar, are quantitatively different in several important ways. First, the gentle rise below 6 K in C/T reflecting the Kondo anomaly is pushed to lower temperatures in UBeB. Second, C/T at T_c is somewhat larger in UBeB than in UBe$_{13}$, and finally, the jump in specific heat ΔC at T_c is much larger in UBeB than in UBe$_{13}$. The T_c from either the onset or midpoint of the jump in C/T is unchanged and x-ray analysis does not show a distinguishable difference between UBe$_{13}$ and UBeB. The resistivity maximum at about 2.5 K in UBe$_{13}$ is shifted to a slightly lower temperature in UBeB, however. When Th is added to UBeB T_c is reduced to about 0.6 K and two specific heat transitions are clearly visible below 0.6 K. The latter is similar to specific heat data reported previously for unborated $U_{1-x}Th_xBe_{13}$ ($0.019 < x < 0.043$).

III. μSR DATA

The μSR time differential spectra were analyzed using the standard zero-field Kubo–Toyabe relaxation function, which gives very good fits to the data. The μSR relaxation rate σ (μs^{-1}) in pure UBe$_{13}$ is due to inhomogeneous broadening from the 6Be nuclear-dipole-field distribution at the μ^+ site. No change in relaxation rate σ for $T < 8$ K has been observed in UBe$_{13}$. Figure 2 shows σ as a function of temperature for UBeB, UThBeB, and UThBe. As in UBe$_{13}$, UBeB shows no change in σ between 0.05 and 1.7 K. When Th is added to the system, however, the μSR rate rises dramatically below about 0.4 K, as reported previously for (U,Th)Be$_{13}$. This rise in σ is due to the onset of magnetic correlations associated with the lower-temperature phase in (U,Th)Be$_{13}$, as mentioned in the introduction.

IV. ANALYSIS AND CONCLUSIONS

Although the substitution of a few percent B for Be or Th for U in UBe$_{13}$ produces a significant increase in ΔC at T_c compared to pure UBe$_{13}$, only Th produces an onset of magnetic correlations, at least for the boron concentration studied here. This may be due to the fact that, unlike B, Th is substituted at the f-electron site. We confine the remainder of this discussion to a comparison of UBe$_{13}$ and UBeB,
where no magnetism is present, and the interpretation of the specific heat data is therefore less complicated.

The entropy S removed by the superconducting transition is given by

$$S(T_c) = \int_0^{T_c} C \, dT.$$ \hfill (1)

One must have $S(T_c) = \gamma T_c$ to conserve entropy, where at low temperatures in a free electron picture the Sommerfeld constant γ is independent of temperature. Table I gives $S(T_c)$, $\gamma(T_c)$, and T_c showing that in our UBe$_{13}$ sample entropy is not quite conserved with the assumption of a temperature-independent γ. The entropy conservation is somewhat worse in UBe$_B$. This indicates that the heavy-electron state is still forming when the superconducting transition occurs [i.e., $\gamma(T)$ is increasing as T decreases].

If we assume for simplicity that γ increases linearly below T_c, then we arrive at a value $\gamma(T_c/2)$ necessary to conserve entropy in the superconducting transition [i.e., $S(T_c) = \gamma T_c$]. One obtains $\gamma(T_c/2) = 1.17$ and 1.35 J/mol K2 for UBe$_{13}$ and UBe$_B$, respectively (Table I). Thus adding B to UBe$_{13}$ increases the low-temperature density of states, which is proportional to γ. This could happen if the Fermi energy is changed as electrons are added to the conduction band with B doping, or through a shift in the Kondo temperature T_K, or both. As noted above, however, the shape of the C/T data between about 1 and 6 K indicates that T_K has been lowered in UBe$_B$. We note that the total entropy $S(20 \text{ K})$ released up to 20 K is the same within 5% for the two systems (Table I).

The specific heat jump ΔC is given by the difference in the rate of change of entropy with temperature above and below T_c:

$$\Delta C = T_c \left[\left(\frac{\partial S}{\partial T} \right)_T - \left(\frac{\partial S}{\partial T} \right)_N \right] = \alpha \gamma T_c.$$ \hfill (2)

In BCS theory $\alpha = 1.43$ for the assumption of weak S-wave coupling. Taking $\gamma = \gamma(T_c/2)$ in Eq. (2) one has $\alpha = 1.5$ and 2.5 in UBe$_{13}$ and UBe$_B$, respectively. Thus the large ΔC in UBe$_B$ is not simply a consequence of an increased density of states (larger γ), but reflects a significant change in the properties of the superconducting state. This is evident from a plot of $S(T)$ (not shown). The slope $(\partial S/\partial T)$ just below T_c is seen to be significantly larger in

<p>| Table I. Specific heat data for UBe$_{13}$-$_B$. Symbols are defined in the text. |
|--------------------|-----------------|------------------|</p>
<table>
<thead>
<tr>
<th>T_c (K)</th>
<th>UBe$_{13}$</th>
<th>UBe${13.97}B{0.03}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma(T_c)$ (J/mol K2)</td>
<td>1.04</td>
<td>1.13</td>
</tr>
<tr>
<td>$\gamma(T_c)$ (J/mol K)</td>
<td>1.95</td>
<td>1.03</td>
</tr>
<tr>
<td>$\gamma(T_c)$ (J/mol K2)</td>
<td>1.17</td>
<td>1.35</td>
</tr>
<tr>
<td>$\gamma(T_c)$ (J/mol K)</td>
<td>1.06</td>
<td>1.23</td>
</tr>
<tr>
<td>$S(20 \text{ K})$ (J/mol K)</td>
<td>5.91</td>
<td>5.69</td>
</tr>
<tr>
<td>$\Delta C/\gamma T_c$</td>
<td>1.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>
UBeB than in UBe$_{13}$, whereas the slope \(\langle S/\partial T\rangle_s\) above \(T_c\) is roughly the same in the two materials.

The actual values of \(\alpha\) extracted above clearly depend on the linear extrapolation of \(\gamma\) below \(T_c\), where an average \(\gamma\) was used in Eq. (2). Therefore, it is the change in \(\alpha\) between UBe$_{13}$ and UBeB which is most significant, and not its absolute magnitude. The conclusion that \(\alpha\) changes significantly with B doping is valid only as long as \(\gamma(T)\) varies smoothly below \(T_c\), where an average was used in Bq. (2).

Therefore, it is the change in \(\alpha\) between UBe$_{13}$ and UBeB which is most significant, and not its absolute magnitude. We note again that \(T_c\) is unchanged with B doping for this sample. Previously, a depression of \(T_c\) to about 0.77 K, accompanied by a smaller and broader (in temperature) \(\Delta C\) jump, was reported\(^1\) for UBe$_{13-y}B_y$ \((y = 0.03)\). Nevertheless, an enhanced value of \(\alpha\) was also observed in this UBeB sample,\(^2\) though less than in the present sample. The differences from sample to sample are not yet understood. All samples in the present study, however, were prepared at the same time with the same materials and were the same size.

In conclusion, we have shown that both Th and B depress the Kondo temperature in U$_{1-x}$Th$_x$Be$_{13-y}B_y$ and lead to an enhanced specific jump \(\Delta C\) compared to UBe$_{13}$. Only Th induces detectable magnetic correlations, however. The enhancement of \(\Delta C\) in UBeB is larger than expected from an increase in the density of states at the Fermi surface, reflecting a change in the superconducting properties. This change could be due to an increase in the strength of the pairing or to a softening of the characteristic mode frequency associated with the pairing interaction. The fact that changes in the superconducting state appear to be associated with changes in the Kondo temperature provide evidence for the importance of magnetic excitations in the superconducting pairing interaction in UBe$_{13}$.

ACKNOWLEDGMENTS

We thank P. Canfield for resistivity measurements and J. A. O'Rourke for x-ray measurements.
