Title
EFFECT OF WALL MATERIAL ON H PRODUCTION IN A MULTICUSP SOURCE

Permalink
https://escholarship.org/uc/item/0236n2s2

Authors
Leung, K.N.
Ehlers, K.W.
Pyle, R.V.

Publication Date
1985-02-01
EFFECT OF WALL MATERIAL ON H− PRODUCTION IN A MULTICUSP SOURCE

K.N. Leung, K.W. Ehlers, and R.V. Pyle

February 1985
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Effect of Wall Material on H⁻ Production in a Multicusp Source*

Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

February 1985

Submitted to Applied Physics Letters

* This work was supported by the Air Force Office of Scientific Research and by the Director, Office of Energy Research, Office of Fusion Energy, Development and Technology Division of the U.S. Department of Energy under contract No. DE-AC03-76SF00098.
Effect of Wall Material on H⁻ Production in a Multicusp Source*

Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

February 1985

Abstract

The effect of wall material on volume H⁻ production in a magnetically-filtered multicusp source has been investigated. Under the same discharge conditions, Al and Cu generally produce the highest H⁻ ion current. It is shown that secondary electrons emitted from wall surfaces can account for the difference in H⁻ yield.

* This work was supported by the Air Force Office of Scientific Research and by the Director, Office of Energy Research, Office of Fusion Energy, Development and Technology Division of the U.S. Department of Energy under contract No. DE-AC03-76SF00098.
H- or D- ions are required to generate efficient neutral beams with energies in excess of 150 keV.1 A magnetically-filtered multicusp source is capable of producing high-quality volume-generated H- beams with sufficient current density (~ 40 mA/cm2) to be useful for both neutral beam heating of fusion plasmas and accelerator applications.2 Attempts have been made to further improve the arc efficiency of this source in order to provide the capability of long pulse or dc operation.3 The effect of wall material and wall temperature on the H- ion density has been studied by Graham in a high pressure, diffusion-type plasma.4 No significant difference in negative ion densities has been observed for Pyrex, stainless steel, copper or molybdenum. In this paper, we investigate the extracted H- beam with different metallic liners installed in the magnetically-filtered multicusp source. Experimental results show that the H- output can be enhanced by proper selection of the chamber wall material when the source is operated with a low pressure hydrogen discharge.

Figure 1 shows a schematic diagram of the apparatus. The source chamber (15 cm diam by 24 cm long) was fabricated from an oxygen-free copper pipe and was surrounded externally by 8 columns of samarium-cobalt magnets to form a longitudinal linecusp configuration for primary electron and plasma confinement.5 The magnet columns on the chamber wall were connected at the end copper flange by three additional rows of magnets. A samarium-cobalt magnet filter6 was installed in the source chamber. This filter was located very close to the plasma electrode of the extractor because in a recent experiment, we observed that there was a sizable increase in extractable H- current if the extractor was placed very near the filter.3

To study the effect of wall materials on the H- ion yield, thin (0.13 mm thick) cylindrical metal liners were installed on the chamber wall as
shown in Fig. 1. These liners were cleaned in an ultrasonic alcohol bath before installation. To ensure good thermal and electrical contact with the source chamber, two stainless-steel rings were used to force the liner to lay flush against the vessel wall. In this arrangement, the ratio of the liner area to that of the uncovered copper end flange was about 6:1.

The open end of the source chamber is enclosed by a two-electrode ion acceleration system. The first, or plasma electrode contained a small (0.1 x 1.0 cm2) extraction slot and this electrode was biased at a potential equal to, or more positive than the anode in order to optimize the H$^-$ ion output. A turbo-molecular pump was used to evacuate the system down to a pressure of about 4 x 10$^{-7}$ Torr. A steady-state hydrogen plasma was produced by primary electrons emitted from two 0.05-cm-diam tungsten filaments. The entire chamber wall, together with the filter rods, served as the anode for the discharge. During the experiment, the pressure inside the source was maintained at ~1.5 x 10$^{-3}$ Torr.

Plasma parameters were obtained by a planar Langmuir probe located near the center of the source chamber. A compact magnetic-deflection mass spectrometer, located just outside the extractor was used for relative measurement of the extracted H$^-$ ions as well as for the analysis of the positive ion species. A discharge power of 90 V, 1A was employed throughout the experiment to generate a modest hydrogen plasma density of about 4 x 1010 cm$^{-3}$.

Figure 2 shows the magnitude of the H$^-$ output signal when seven different metal liners are compared under the same plasma conditions. The results show that aluminum and copper generate the highest H$^-$ yield while stainless steel produces the lowest. The H$^-$ output of other metal liners such as Mo, Ta, W and Au fall between those of Al and stainless steel.
It was also found that there was essentially no change in the magnitude of the H− signal when the copper source chamber was operated with or without an extra copper liner. This observation indicates that either there is no large difference in the surface temperature between the copper chamber wall and the copper liner or the liner surface temperature has no appreciable effect on the H− output. In order to understand the large difference in H− yield (a factor of 2) between the copper and stainless steel liners, the negative-ion mass spectra, the positive hydrogen ion species distributions and the Langmuir probe traces for these two materials were compared.

Figure 3 shows the mass spectrum of the extracted negative ion beam for the copper and stainless steel liners. Apart from the fact that the H− output is different, no other negative ions (with mass number greater than 1 but smaller than 70) were detected in either case. The absence of C−, O− or OH− ions demonstrates that the H− observed is not formed on the source wall or generated in the plasma volume from molecules such as H\textsubscript{2}O or CH\textsubscript{4}. However, there is a noticeable difference in the floating potential \(V_f\) as indicated by the probe characteristics shown in Fig. 4. The fact that \(V_f\) is more negative, and the electron temperature \(T_e\) is slightly higher, indicate that more "hot" electrons are present in the plasma when the source is operated with the stainless steel liner. If these extra "hot" electrons originate at the liner, they must be produced by secondary electron emission from energetic primary electron bombardment on the anode cusp line. Measurements by Kollath show that the secondary electron emission coefficient \(\delta\) for 90 eV primary electrons is typically higher for stainless steel (\(\delta \approx 1\)) than for Al, Mo, W, Ta and Au. In the case of Al, \(\delta\) becomes even smaller as the surface is coated with an oxide layer which increases the work-function.
Secondary electrons are emitted with a peak energy of a few eV, and since the potential of the plasma is about 3 V more positive than the wall, this group of electrons will have a final energy of approximately 8 eV when they enter the plasma. In fact, the indication of more "hot" electrons when a stainless steel liner is used, is also indirectly confirmed by the positive hydrogen ion spectrum shown in Fig. 5. Since H^+ can be formed from H_3^+ by relatively hot electrons, the percentage of H^+ would be expected to be slightly higher (and H_3^+ lower) when stainless steel is compared with copper.

The effect of secondary electrons on H^- production was previously investigated in a separate experiment. In that experiment, it was found that the addition of electrons with energies ≈ 8 eV to a background hydrogen plasma could reduce the H^- yield substantially. Thus, we can conclude that the differences observed in the H^- yield between various metal liners is dependent on the amount of secondary electrons emitted. This in turn depends on the energy and the number of primary electrons impinging on the wall surfaces. In order to optimize the H^- output, it is essential to choose the proper wall material (such as Cu or Al) when the multicusp ion source is operated with a low pressure discharge.
Acknowledgments

We would like to thank A. Lietzke and A. Schlachter for fruitful discussions and D. Moussa for technical assistance.

This work was supported by the Air Force Office of Scientific Research and by the Director, Office of Energy Research, Office of Fusion Energy, Development and Technology Division of the U.S. Department of Energy under contract No. DE-AC03-76SF00098.
References

Figure Captions

Fig. 1 Schematic diagram of the multicusp ion source equipped with a magnetic filter and a metal liner.

Fig. 2 the relative yield of H^- ions when the source is operated with different metal liners.

Fig. 3 The mass spectrum of the extracted negative ion beam when the source is operated with a stainless steel and a copper liner. The electron peaks are not displayed in the figure.

Fig. 4 Langmuir probe characteristics obtained near the center of the chamber when the source is operated with a stainless steel and a copper liner.

Fig. 5 Spectrometer output signal showing the distribution of positive hydrogen ion species when the source is operated with a stainless steel and a copper liner.
Fig. 4
15:4:81 13.5:4:82.5

STAINLESS-STEEL COPPER

Fig. 5
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.