Title
Simulations of beam emittance growth from the collective relaxation of space-charge nonuniformities

Permalink
https://escholarship.org/uc/item/0237d7dd

Authors
Lund, Steven M.
Grote, David P.
Davidson, Ronald C.

Publication Date
2004-05-01
Simulations of beam emittance growth from the collective relaxation of space-charge nonuniformities

Steven M. Lund and David P. Grote

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Ronald C. Davidson

Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA

Abstract

Beams injected into a linear focusing channel typically have some degree of space-charge nonuniformity. For unbunched beams with high space-charge intensity propagating in linear focusing channels, Debye screening of self-field interactions tends to make the transverse density profile flat. An injected particle distribution with a large systematic charge nonuniformity will generally be far from an equilibrium of the focusing channel and the initial condition will launch a broad spectrum of collective modes. These modes can phase-mix and experience nonlinear interactions which result in an effective relaxation to a more thermal-equilibrium-like distribution characterized by a uniform density profile. This relaxation transfers self-field energy from the initial space-charge nonuniformity to the local particle temperature, thereby increasing beam phase space area (emittance growth). Here we employ two-dimensional electrostatic particle in cell (PIC) simulations to investigate the effects of initial transverse space-charge nonuniformities on the quality of beams with high space-charge intensity propagating in a continuous focusing channel. Results are compared to theoretical bounds of emittance growth developed in previous studies. Consistent with earlier theory, it is found that a high degree of initial distribution nonuniformity can be tolerated with only modest emittance growth and that beam control can be maintained. The simulations also provide information on the rate of relaxation and characteristic levels of fluctuations in the relaxed states. This research suggests that a surprising degree of initial space-charge nonuniformity can be tolerated in practical intense beam experiments.

Key words: intense beam, space charge, emittance growth, simulation

PACS: 29.27.Bd, 41.75.-i, 52.59.Sa, 52.27.Jt
1 Introduction

Experiments with high-current, heavy-ion injectors have observed large space-charge nonuniformities in the beam emerging from the source[1]. Sharp density peaks on the radial edge of beam have been measured. Non-ideal forces from aberrations of the applied focusing system and other sources can also result in transverse density profiles that have strongly nonuniform charge density. In ideal linear focusing systems of space-charge-dominated beams, the transverse space-charge distribution of an ion beam tends to be nearly uniform within an elliptical envelope boundary. This produces linear transverse self-field forces within the beam that preserve the beam phase space area (emittance). Theoretical work has described collective modes internal to the core of an intense continuously focused beam[2]. This work suggests that sharp initial density perturbations typically decompose into a broad spectrum of collective modes. For moderate space-charge strength (warm beam), the oscillation frequencies of the individual modes vary strongly thereby leading to rapid phase mixing. Also, the modes nonlinearly interact and Landau damp. These processes tend to disperse the original perturbation structure and result in a more uniform, relaxed density profile with residual fluctuations.

The spatially averaged particle temperature of a heavy ion beam emerging from an injector is typically measured as several times what one would infer from the source thermal temperature (~ 0.1 eV), and subsequent beam envelope compressions result in a beam with $\tilde{T}_x \sim 20$eV where $\tilde{T}_x \sim [e^2/(2R^2)]E_h$. On the other hand, the radial change in potential energy from the beam center to the outer radial edge is $q\Delta \phi \sim 2.25$ keV for a beam with line-charge density $\lambda \sim 0.25\mu$ C/m [$\Delta \phi \sim \lambda/(4\pi \epsilon_0)$]. If even a small fraction of such space-charge energy is “thermalized” during collective relaxation, large temperature and emittance increases can result. There have also been concerns that even if the perturbations launched do not relax that they could lead to a loss of beam control or excessive halo production resulting from oscillating nonlinear self-field forces internal to the beam. Theoretical work based on simple charge and energy conservation arguments, augmented by the rms envelope equations, show that the amount of free energy carried by the charge nonuniformities that can be converted to emittance growth is actually relatively small[3,4]. This work extends earlier theories by ReiBer and others[5-7]. It was shown that even strong initial density nonuniformities with strong beam space-charge strength only result in modest emittance growth.

Earlier theories did not address details of the relaxation process and assumed that an initial nonuniform density beam would relax to a uniform profile via collective processes. The theory assumed complete relaxation to establish an

Email address: SMLund@llnl.gov (Steven M. Lund and David P. Grote).
upper bound of emittance growth. Here we employ the two-dimensional transverse slice module of the WARP electrostatic particle-in-cell (PIC) code to simulate the relaxation process[8]. Results show that collective processes tend to cause an initial beam with strongly nonuniform density to relax to a state that is equilibrium-like with a more uniform, smooth density profile, and low-order residual oscillations. The simulations also provide information not provided by the theory on the rapidity of the effective relaxation processes and the characteristic fluctuation levels about the relaxed state since there is not in general full relaxation. This process is simulated for a wide variety of initial beam space-charge strengths and distribution profiles.

2 Description of the WARP PIC Simulations

Simulation parameters are based on an unbunched coasting ($\beta_b = \text{const}$) intense K^+ ($m = 39.1$ amu) ion beam with particle kinetic energy $E_b = (\gamma_b - 1)mc^2 = 1.0$ MeV and zero spread in axial momentum. Applied focusing is provided by a linear continuous focusing field corresponding to a radial electric field of a uniform, noninteracting background of partially neutralizing charges. The field is set to approximately correspond to typical beam parameters in periodic focusing lattices for heavy ion fusion by requiring that a single particle oscillating in the field has a phase advance $\sigma_0 = 80^\circ$ when measured through an axial propagation distance (lattice period) of $L_p = 0.5$ m. The initial beam has rms edge emittance $\varepsilon_x = \varepsilon_y = 50$ mm mrad and the injected beam current I is adjusted to obtain specified values of the undepressed single-particle phase advance in the the presence of space-charge σ. The value of σ is calculated for an rms-equivalent KV-matched beam with uniform space charge[5].

Transverse statistical averages over an axial slice of the particle distribution f are denoted by $\langle \cdots \rangle_{\perp}$. Primes denote derivatives with respect to the axial coordinate s. Along the x-axis, the statistical beam edge radius and rms edge emittance are defined as

$$r_x = 2\sqrt{\langle x^2 \rangle_{\perp}}$$

(1)

and

$$\varepsilon_x = 4[\langle x^2 \rangle_{\perp} \langle x'^2 \rangle_{\perp} - \langle xx' \rangle_{\perp}]^{1/2}.$$

(2)

Analogous expressions apply along the y-axis.

A flexible distribution loading module of the WARP code is employed to ini-
tialize an initial \((s = 0)\) axisymmetric distribution of macro-particles \(f(x, y, x', y')\) consistent with independently-specified, gridded radial profiles in density, radial flow velocity, and Gaussian-distributed local velocity spread. The radial density profile \(n = \int d^2x' \int f_\perp\) is given by \([3,4]\)

\[
n(r) = \begin{cases}
\hat{n} \left[1 + \frac{r}{h} \left(\frac{r}{r_b} \right)^p \right], & 0 \leq r \leq r_b, \\
0, & r_b < r \leq r_p.
\end{cases} \tag{3}
\]

Here, \(r_b\) is the physical edge-radius of the beam, \(\hat{n} = n(r = 0)\) is the on-axis \((r = 0)\) beam density, and \(h\) and \(p\) \((p \geq 0)\) are “hollowing” and “steepeening index” parameters associated with the radial density nonuniformity. The hollowing parameter \(h = n(r = r_b)/n(r = 0)\) corresponds to the ratio of beam density at the outer radial edge of the beam \([n(r = r_b)]\) to the density at the beam center \([n(r = 0) = \hat{n}]\). For \(0 \leq h < 1\), the density is hollowed on-axis, and for \(0 \leq 1/h < 1\), the density is peaked on-axis. The limit \(h \to 1\) corresponds to a uniform density beam regardless of the value of \(p\). On the other hand, the limits \(h \to 0\) and \(1/h \to 0\) correspond to hollowed and peaked beams with the density approaching zero on-axis and at the beam edge \((r = r_b)\), respectively. For large steepening index \(p \gg 1\), the density gradient will be significant only near the radial edge of the beam \((r \approx r_b)\). The radial flow velocity \(\int d^2x' (x' \mathbf{e}_x + y' \mathbf{e}_y) f_\perp\) is taken to be zero. A function with the same form as Eq. (3) is used to set the radial temperature profiles \(T_x(r) = (\gamma_0 m c^2 \int d^2x' x'^2 f_\perp) / \int d^2x' f_\perp\) with \(T_y(r) = T_x(r)\) defined analogously. These temperature profiles set the Gaussian-distributed spread in \(x'\) and \(y'\) as a function of \(r\). Overall scales are set consistently from the beam edge radius \(r_b\) and the statistical rms emittances with \(\varepsilon_x = \varepsilon_y\).

The line-charge density \((\lambda)\) and rms edge-radius \((R = r_x = r_y)\) of the axisymmetric initial beam are related to the density profile parameters in Eq. (3) by \([3,4]\)

\[
\lambda = \int d^2x_\perp n = \pi q \hat{n} r_b^2 \left[\frac{(ph + 2)}{(p + 2)h} \right],
\]

\[
R = 2 \langle x^2 \rangle_\perp^{1/2} = \sqrt{\frac{(p + 2)(ph + 2)}{(p + 4)(ph + 2)}} r_b. \tag{4}
\]

Using these expressions, the beam density profile \(n(r)\) given by Eq. (3) is plotted in Fig. 1 as \(n(r)/[\lambda/(q\pi R^2)]\) versus \(r/R\) to illustrate changes in the radial beam density profile with several values of steepening index \(p\) at fixed charge \((\lambda = \text{const})\) and rms beam size \((R = \text{const})\). In Fig. 1 hollowed beams are plotted along with the uniform density case for reference. Analogous plots hold for the initial temperature profile. Appropriate choices of \(h\) and \(p\) allow a wide
range of initial hollowed and peaked profiles to be modeled. For the special case of \(h = 1 \) for both the density and temperature profiles, this initial distribution reduces to the frequently-used semi-Gaussian with a spatially uniform distribution of particle coordinates \(x \) and \(y \) and incoherent Gaussian-distributed velocity spreads in \(x' \) and \(y' \) within a round beam envelope \((r_x = r_y)\). The semi-Gaussian distribution provides a reasonable approximation to a relaxed, strongly-space-charge dominated beam emerging from a long transport channel where the density is expected to be nearly uniform and the beam-edge sharp\([9]\).

![Graph showing density profile](image)

Fig. 1. Scaled density profile \(n(r)/[\lambda/(\pi q R^2)] \) from Eq. (3) plotted versus \(r/R \) with fixed \(\lambda \) and \(R \). Hollowed \((h = 1/4)\) profiles are shown for \(p = 2 \) and \(p = 8 \). The rms equivalent uniform \((h = 1)\) profile is shown with a dashed curve.

For continuous focusing channels, infinite families of equilibrium distributions can be constructed by specifying any \(f(H_\perp) \) with \(f \geq 0 \) where \(H_\perp \) is the transverse particle Hamiltonian\([5,6]\). On the other hand, for the hollowed and peaked distributions specified above, the initial beam is far from equilibrium form. Particles will generally be strongly out of local radial force balance and the beam will quickly evolve away from the initial condition. For a nonequilibrium distribution, the rms edge emittance in Eq. (2) is conserved only if all forces acting on the particles are linear\([7,10]\). Evolutions in \(\varepsilon_x \) arising from the evolution in the charge density profile can provide a sensitive measure of undesired nonlinear self-field forces acting on the beam.

Numerical parameters of the simulations are set for high resolution to resolve nonlinear space-charge fields and a sharp beam edge. Spatial grids are uniform with typical transverse grid increments \(dx = dy \) chosen for 50–200 grids across the initial edge radius of the beam \((i.e., \text{from } r = 0 \text{ to } r = r_0)\). The beam is contained by a round, perfectly conducting cylindrical pipe of sufficient radius to prevent particle losses. To limit statistical noise in the smoothed-beam self-field interactions and better represent ideal Vlasov evolution, we
employ 100–1000 particles per grid cell in the injected beam. Particles are leap-frog-advanced with 450 steps per undepressed betatron period to resolve rapid mode phase advances and beam advances of up to 20 betatron periods were taken. Gridded data is plotted without averaging over radial zones of the axisymmetric beam to illustrate the numerical noise and help guide periodic focusing beam simulations not shown in this paper.

3 Theoretical Results

In general, a strongly nonequilibrium beam will launch a broad spectrum of waves that can be thought of as mode-like perturbations evolving on an underlying pseudo-equilibrium beam with a smooth density profile. The pseudo-equilibrium density profile is expected to be nearly flat for beams with high space-charge intensity. If the pseudo-equilibrium is stable, one expects the perturbations to phase-mix, Landau damp, and nonlinearly interact to cause the density profile to relax to a more uniform profile with persistent, residual fluctuations. If the fluctuations are neglected, system conservation constraints can be employed to connect the initial beam distribution to a final, fully-relaxed pseudo-equilibrium profile with uniform density. These constraints can be employed to estimate emittance growth driven by the free energy conversion of the waves.

For a continuous focusing channel, the initial axisymmetric beam distribution with a nonuniform (\(h \neq 1 \)) density profile given by Eq. (3) and an arbitrary distribution in \(x' \) can be connected to a final, relaxed axisymmetric beam distribution with uniform density (\(h = 1 \)) by the charge and energy conservation constraints maintained by the Vlasov evolution. Assuming that both the initial (subscript \(i \)) and final (subscript \(f \)) distributions are rms-matched, a theoretical analysis of the conservation constraints[3,4] shows that

\[
\frac{(R_f/R_i)^2 - 1}{1 - (\sigma_i/\sigma_0)^2} + \frac{p(1-h)[4 + p + (3 + p)h]}{(p + 2)(p + 4)(2 + ph)^2} + \ln \left[\frac{(p + 2)(ph + 4) R_f}{(p + 4)(ph + 2) R_i} \right] = 0.
\]

Here, \(h \) and \(p \) are the hollowing factor and steepening index of the initial density profile, and \(\sigma_i/\sigma_0 \) is the initial space-charge intensity. This nonlinear constraint equation can be solved numerically for fixed \(h, p, \sigma_i/\sigma_0 \) to determine the ratio of final to initial rms radius of the beam \((R_f/R_i) \) which can then be used to calculate the ratio of the final to initial beam emittance as[3,4]
\[\frac{\varepsilon_{xf}}{\varepsilon_{xi}} = \frac{R_f}{R_i} \sqrt{\frac{(R_f/R_i)^2 - [1 - (\sigma_i/\sigma_0)^2]}{\sigma_i/\sigma_0^2}}. \] (6)

Equations (5) and (6) were solved numerically in Ref. [3,4] to parametrically analyze the emittance growth \((\varepsilon_{xf}/\varepsilon_{xi}) \) from the relaxation of an initial rms matched beam \((R_i = 0 = R_i^0) \) with nonuniform hollowed and peaked density profiles to a final, uniform, matched profile. Surprisingly modest emittance growth factors (factor of 2 and less) were found even for strongly hollowed \((1 > h > 0.1) \) beams for intense beam parameters with \(\sigma_i/\sigma_0 \approx 0.1 \) and greater. As expected, much less growth was observed for beams with initially peaked density profiles \((h > 1) \) because such profiles are closer to uniform and contain less free energy.

It can be shown that the field energy of a uniform density beam is a global minimum when compared to all other density profiles with the same line-charge and rms radius [3,4]. Therefore a distribution relaxation that evolves a nonuniform density beam to a uniform density beam has maximal free energy to drive emittance growth relative to all other possible relaxations. Thus the emittance growths calculated from the formulation above are expected to be an upper bound for continuous focusing since real evolutions will not, in general, achieve full relaxation. Although the above analysis above assumes that the beam relaxes to a uniform density core, further analysis shows that only small reductions in the predicted upper-bound emittance growths if the initial relaxes instead to a thermal equilibrium density profile instead of a uniform density beam [9,4]. This result holds result over the full range of space charge strength \(0 \leq \sigma_i/\sigma_0 \leq 1 \). For \(\sigma_i/\sigma_0 \rightarrow 0 \) the thermal equilibrium profile will have uniform density, and for \(\sigma_i/\sigma_0 \rightarrow 1 \) it will be a bell-shaped Gaussian profile.

4 Simulation Results

The theory outlined in Sec. 3 has been checked with PIC simulations using the methods described in Sec. 2. Simulations are carried out for a range of space-charge strength and a wide variety of initial density and temperature profiles. The space-charge strength is specified by the value of \(\sigma_i/\sigma_0 \) for the initial rms-equivalent beam with uniform density. Initial density profiles are hollowed \((h < 1) \) in radius and initial temperature profiles are flat \((h = 1) \), hollowed \((h < 1) \), or peaked \((1/h < 1) \).

Results from the simulations are shown in Figs. 2 and 3 and are summarized in Table 1. In Fig. 2 a typical history of rms emittance growth \((\varepsilon_{xf}/\varepsilon_{xi}) \) is plotted for an initial beam with \(\sigma_i/\sigma_0 = 0.2 \) and a strongly hollowed density profile
and a parabolic temperature profile \((h = \infty, p = 2)\). The emittance undergoes a rapid evolution during the initial transient phase of the wave and then settles down to a persistent fluctuation with several lower-order frequency components. For higher values of \(\sigma_i/\sigma_0\) the persistent oscillation also appears to slowly damp. Moreover, the average value of the fluctuating emittance is only associated with relatively modest total growth from the initial profile despite the high space-charge intensity and strongly hollowed initial density profile. Substantial “ringing” back of the initial density perturbation is not observed over the length of the simulations. Beam density profile snapshots along the \(x\)-axis are plotted in Fig. 3 at the points indicated in Fig. 2. Note that the 4 to 1 hollowing \((h = 0.25)\) of the initial density profile has been cut off to display all plots on the same scale and better observe fluctuations in the relaxed state. Also indicated in Fig. 2 are the values of the “relaxed” emittance growth and the fluctuation level as well as the approximate distance of beam propagation measured in betatron periods that is needed for the emittance to settle down to a persistent fluctuation are indicated. The emittance growth factor predicted by the theory in Sec. 3 assuming full relaxation to a uniform density profile is also indicated in Fig. 2. Note that emittance growth factors measured at the peak value of the emittance oscillations correspond to more uniform radial density profiles with corresponding growth factors that closely approach the theoretical bound.

![Graph showing emittance growth](image)

Fig. 2. Emittance growth \(\varepsilon_x/\varepsilon_{xi} = \varepsilon_y/\varepsilon_{yi}\) versus versus undressed betatron oscillations \((s/[\sigma_0/(2\pi L)])\) for a continuous focused beam with a strongly hollowed \((h = 0.25, p = 8)\) initial density profile and a parabolic \((h = \infty, p = 2)\) initial temperature profile.

Properties of the evolution in Figs. 3 and 3 are summarized in Table 1. Data for other simulations with differing space-charge strengths and initial distributions are also presented in Table 1. We find that the different initial beam parameters and space-charge strengths result in analogous evolutions. Results are
Fig. 3. Density profile snapshots of an evolving continuously focused beam corresponding to the emittance evolution in Fig. 2. The rms-equivalent uniform density beam is superimposed.

consistent with a broad spectrum of internal collective modes being launched inside the beam that then phase-mix and nonlinearly interact to cause the beam to relax to an state with increased emittance. Note that flat ($h = 1$), peaked ($h \to \infty$), and hollowed ($h = 0.5$) radial temperature profiles are simulated for the same space-charge strength and radial density profile. In general, little rms envelope mismatch develops during the evolution of the internal collective waves with the flattening of the density profile. Generation of beam halo particles appears to be minimal and higher-order (i.e., remaining close to the rms beam edge and not driven by envelope mismatch).

Comparing simulations of emittance growth for beams with the same space charge strength and density profile with differing temperature profiles in Table 1, it is evident the emittance growth depends only weakly on the structure of the initial temperature profile. In theory, there should be no dependence on the temperature profile if there is complete relaxation. But the varying
Table 1
Results of collective evolution for beams with hollowed initial density profiles in a continuous focusing channel. Blank entries are repeated from the previous line above. Simulated emittance growth estimates correspond to the average value in the relaxed state, and in brackets (peak growth value, range of oscillations in the relaxed state min–max).

<table>
<thead>
<tr>
<th>Initial Beam</th>
<th>Relaxed and Transient Beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_i/\sigma_0)</td>
<td>Density</td>
</tr>
<tr>
<td>(h)</td>
<td>(p)</td>
</tr>
<tr>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initial conditions launch different wave spectra that can result in somewhat different “relaxed” states with different levels of fluctuation which probably accounts for most of the differences in the emittance growth between initial states with the same density profile. Also, the differing initial conditions can require different propagation distances to settle down due to the initial states projecting on different mode spectra. In all cases, the residual fluctuations appear to project primarily on low-order collective modes internal to the core of the beam. Increased space-charge strength seem to result in less damping of the initial perturbations. It is also observed that the propagation distance and the final level of fluctuations can vary with the amplitude of the initial perturbations indicating nonlinear effects (not pure phase-mixing). Propagation distances to the relaxed state listed in Table 1 are only approximate estimates that are measured as the distance of propagation needed for the emittance oscillations to remain bounded by a persistent fluctuation. Complicating the estimates is that for higher values of \(\sigma_i/\sigma_0 \) the mode fluctuations may continue to experience slow Landau damping. The “relaxed” value of the emittance is calculated from the average value (taken over the fluctuations)
of the emittance oscillation in the relaxed state. Similar results to the density profile evolution in Fig 3 are observed when the radial temperature profile is calculated from the particle distribution. The radial temperature profile in the relaxed state is observed to be more uniform with presistant lower-order fluctuations.

It should also be kept in mind that real accelerator systems will have small nonlinear applied fields with both periodic (systematic) and aperiodic (construction error) terms that will further prevent wave packets from ever achieving phase coherence to allow initial perturbations to ring back even in long lattices. In addition, other small non-ideal effects in real machines such as species contamination, scattering, etc., will likely further suppress significant ringing. As a practical matter, the influence of nonlinear applied fields and other non-ideal effects on the evolution of a broad spectrum of waves is extremely difficult to address with simulations because it usually requires observation of long-path-length evolutions with both high resolution and statistics, while resolving many effects.

5 Conclusions

PIC simulations have been employed to show that beams with high space-charge intensity transported in linear applied focusing channels can withstand large initial density-profile nonuniformities without suffering excessive emittance growth or loss of beam control as the beam evolves to a more uniform profile via collective processes. Simple theoretical models based on system conservation have been used to parametrically bound the expected emittance growth and further support the conjecture that a wide range of perturbations can be tolerated[3,4]. This has important implications in the operation of practical machines because it shows that many processes leading to density nonuniformities can be tolerated in beams with high space-charge intensity.

Continuations of these studies are examining the combined role of beam envelope mismatch in collective relaxation processes and modifications induced by alternating-gradient (periodic) focusing. Extensions of the theory already completed find little modification to results presented here when the energy associated with rms beam mismatch is transfered from the initial to the final state[4]. Preliminary simulation results also indicate that even though system energy is not conserved for alternating gradient focused beams, the continuous focusing results also provide reasonable emittance growth estimates if the beam maintains rms matched conditions. This follows because after an initial transient evolution, the regular focusing cycle of a periodic lattice should not pump or remove net energy from a stable beam core. It also appears that alternating gradient focusing adds additional frequency scales that further en-
hances phase mixing and nonlinear collective interactions smoothing the beam profile.

Acknowledgments

The authors wish to thank J.J. Barnard, E.P. Lee, and A. Friedman for useful discussions and J.L.-Vay for help with the WARP code diagnostics. This work performed under the auspices of the U.S Department of Energy by University of California, Lawrence Livermore National Laboratory and Princeton Plasma Physics Laboratory under contracts No. W-7405-Eng-48 and DE-AC0Z-76-CHO-3073.

References

