Title
RIFAMYCIN DERIVATIVES AS INHIBITORS OF AN RNA-INSTRUCTED DNA POLYMERASE FUNCTION: EFFECT OF LIPOPHILICITY

Permalink
https://escholarship.org/uc/item/03g3s5r4

Authors
Tischler, Allan N.
Thompson, Frances M.
Libertini, Louis J.
et al.

Publication Date
1974
RIFAMYCIN DERIVATIVES AS INHIBITORS OF AN RNA-INSTRUCTED DNA POLYMERASE FUNCTION: EFFECT OF LIPOPHILICITY

Allan N. Tischler, Frances M. Thompson, Louis J. Libertini and Melvin Calvin

January 24, 1974

Prepared for the U.S. Atomic Energy Commission under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
RIFAMYCIN DERIVATIVES AS INHIBITORS OF AN RNA-INSTRUCTED DNA POLYMERASE FUNCTION: EFFECT OF LIPOPHILICITY

Allan N. Tischler, Frances M. Thompson, Louis J. Libertini and Melvin Calvin

Laboratory of Chemical Biodynamics, University of California, Berkeley, California

ABSTRACT

Several new rifamycin derivatives have been synthesized and tested as inhibitors of an RNA-instructed DNA polymerase (RDP) function in an effort to determine the effect of rifamycin structure on RDP inhibition. It was found in general that RDP inhibition is favored by lipophilic "tails" bound to the 3-position of rifamycin SV. Lipophilicity was measured by a reversed phase thin layer chromatographic technique.
INTRODUCTION

The discovery of RNA-instructed DNA polymerase (RDP)1,2 associated with RNA tumor viruses has provided an explanation for the ability of these viruses to express themselves genetically in host cells. According to the provirus theory, the virus upon entering the host cell, utilizing its RDP, can produce its corresponding DNA copy (provirus), which can become integrated into the host DNA. This integration, or later acts as a consequence of integration, could then lead to the transformation of the host cell3. Indeed, evidence for the existence of the provirus associated with the DNA of transformed human cells has been presented utilizing DNA-DNA hybridization techniques4. The viral genetic information is usually found in transformed human cells and not in normal cells5. Spiegelman reports that for two different sets of identical twins, in which one twin from each set is leukemic, the viral genetic information is found only in the leukemic twins6. These findings can be taken as evidence for horizontal transmission of cancer in accordance with the provirus theory.

It has, therefore, been of great interest to obtain inhibitors of RDP. To date many compounds have been found capable of RDP inhibition to varying degrees7. Some of these inhibitors have been shown to inhibit the transformation of tissue culture cells inoculated with appropriate RNA tumor viruses7-10. Certain derivatives of the rifamycins, which are among these, are of particular interest.

In a preceding article11 we described the synthesis of new rifamycin inhibitors of RDP and presented evidence establishing size and lipophilicity of the "tail" bound to rifamycin SV as desirable properties for maximizing inhibition. We found that the derivative rifazacyclo-16 (RC-16) was especially potent. Since that time we have devoted ourselves to further
investigating the effect of size and lipophilicity of rifamycin "tails".

Toward this end, three synthetic approaches have been taken. First: the synthesis of a series of rifamycin derivatives with cyclic aliphatic tails (rifazacyclo series) to investigate the effect of lipophilicity in an analogous series. Second: the synthesis of an acyclic analogous series (rifazone series) to investigate the difference between cyclic and acyclic derivatives. Third: the synthesis of a quaternary derivative of dimethylbenzyldesmethylrifampicin (DMB), DMB-methyliodide (DMB-MI), and an analog of DMB in which the 4'-nitrogen is replaced with a carbon atom (DMB-analog). Since the DMB-MI has a fixed charge on nitrogen and the DMB-analog has no charge, we can investigate the effect of lipophilicity in a series of compounds each having approximately the same configuration. The structures of all these derivatives are given in Figure 1.

The technique of reversed phase thin layer chromatography was used to determine the relative lipophilicity of all the derivatives in the present study. From the R$_F$ values thus obtained the free energy related parameter, ΔR_M, could be calculated12,13. This parameter, which is analogous to the π parameter developed by Hansch14 is especially well suited for lipophilic molecules with very low water solubility. The ΔR_M parameter has been shown to correlate well with the actions of penicillins, rifamycins and other classes of compounds12,13,15.

Finally, each derivative was tested as an inhibitor of RDP. The inhibition constant, K_I, is defined as the molar concentration of derivative corresponding to 50% inhibition of the control RDP activity. The RDP was derived from UCl-B cells and was used after partial purification16.
Rifamycin SV

Rifaldehyde

Rifampicin

Rifazacyclo Series

Rifazacyclo-6 (RC-6) Rifazacyclo-7 (RC-7) Rifazacyclo-8 (RC-8)

Rifazacyclo-9 (RC-9) Rifazacyclo-10 (RC-10)

Rifazacyclo-13 (RC-13) Rifazacyclo-16 (RC-16)

Rifazone Series

Rifazone-4 (R-4)

Rifazone-5 (R-5)

Rifazone-6 (R-6)

Rifazone-8 (R-8)

Dimethylbenzyl Series

Dimethylbenzylmethoxyacetamidin (DMBA)

Dimethylbenzylmethoxyacetamidin (DMBA-MI)

Dimethylbenzylmethoxyacetamidin (DMBA-MI)

Tischler, et al.

FIGURE 1

Rifamycin derivatives
It should be noted that the K_i reported may represent sub-maximal inhibition due to the interaction of the derivatives with the extraneous protein present as impurities. As the enzyme is more highly purified, the measured K_i may thus become smaller.

RESULTS AND DISCUSSION

The general synthesis of the derivatives of the rifazacyclo series is outlined in Scheme I. The position in Scheme I with which synthesis began depended on the availability of the starting materials. For RC-6 and RC-7, which have been synthesized before, the hydrazine, 5 ($n = 6$ and 7) were available, and the rifamycin derivatives were readily prepared by condensation with rifaldehyde. For RC-8, RC-9 and RC-13 the synthesis began with the lactams, 2 ($n = 8, 9$ and 13), and for RC-11 and RC-1611 we started with the cyclic ketones, 1 ($n = 11$ and 16).

The starting material for each of the derivatives in the rifazone series was the appropriate disubstituted amine which was converted to the respective hydrazines by nitrosation followed by lithium aluminum hydride (LAH) reduction.

DMB-MI was obtained by the reaction of DMB in methyl iodide. The synthesis of DMB-analog is given in Scheme II. The first three steps, i.e., Hantsch condensation, aromatization and saponification, were performed as described17. Several attempts at the saponification of the dihydropyridine 6 were unsuccessful, usually resulting only in the partial decomposition of the starting material. The saponification of the pyridine-7 was quite facile, as described17. The diacid 9 was found to readily decarboxylate above 200° to give the desired compound 10. Several efforts were made to
Tischler, et al.

Scheme I
SYNTHESIS OF A LIPOPHILIC ANALOG OF DMB

Overall yield ≈18%

Tischler, et al.

Scheme II
reduce 10 to 11 by hydrogenation over Adam's catalyst. In each case reduction of the phenyl ring was at least as fast as the reduction of the pyridine ring. In simpler molecules containing both phenyl and pyridine rings it is generally found that the pyridine ring is preferentially reduced18. We suspect that the lack of preference for the reduction of the pyridine ring in 10 is due to the steric interaction of the two methyl groups. The desired reduction was readily affected by a modified Birch reduction19. Nitrosation and subsequent LAH reduction of piperidine 11 to hydrazine 13 was relatively straightforward.

In order to compare the lipophilicity within each series and between series, a quantitative measure was needed. A useful parameter of lipophilicity is the substituent coefficient, π, which is defined by the free energy relationship14

$$\pi = \log \left(\frac{P_X}{P_H} \right)$$

where P_X and P_H are the experimentally determined partition coefficients for the substituted and unsubstituted compounds, respectively. This parameter, developed by Hansch and coworkers, is thus a measure of the lipophilicity contributed by the substituent.

Because many of the rifamycins presented here have extremely low solubilities in water, we resorted to the technique of reversed phase thin layer chromatography (TLC)13,15. The R_F values thus obtained have been shown to be related to the partition coefficients, P, by the expression

$$P = \text{const} \left(\frac{1}{R_F} - 1 \right)$$

We can therefore express π as a function of R_F by the relation
\[\pi = R_M(\text{derivative}) - R_M(\text{rifamycin SV}) = \Delta R_M \]

where \(\Delta R_M \) has been defined as \(\log \left(\frac{1}{R_F} - 1 \right) \). For our purposes the unsubstituted compound is rifamycin SV.

The \(R_M \) and the \(K_I \) with RDP are given for each derivative in Table I. Figure 2 shows that there exists a near linear relationship between \(\Delta R_M \) and the number of carbon atoms in the tail for both the rifazacyclo and the rifazone series. The graph also shows that carbon for carbon the acyclic rifazone series is more lipophilic than the cyclic rifazacyclo series.

A plot of inhibition (log \(K_I \)) as a function of lipophilicity (\(\Delta R_M \)) is given in Figure 3 for both the rifazacyclo and rifazone series. In addition, the points for other rifamycin derivatives from Table I are plotted. In general it can be concluded that RDP inhibition is favored by tail lipophilicity. There appears to be an optimal lipophilicity for both the rifazacyclo and rifazone series at approximately \(\Delta R_M = 2.1 \). Accordingly, R-82, the only derivative with \(\Delta R_M > 2.1 \), is less effective an inhibitor than the less lipophilic R-62. It is of interest to note that while there is no large difference between the cyclic and acyclic series, the more lipophilic rifazone series is less effective than the rifazacyclo series at inhibiting RDP. This can be taken as evidence for the existence of factors other than lipophilicity for optimal RDP inhibition.

The derivatives of the dimethylbenzyl series, DMB and DMB-analog, fall in the same area of Figure 3 as the cyclic and acyclic series. This suggests to us that their inhibition is due primarily to their lipophilicity and not to their particular configuration. Also, the fact that the uncharged DMB-analog is over three times more effective than DMB, while the charged DMB-MI is ineffective, suggests that the inhibition exhibited by DMB itself, which should be largely charged at the assay pH (7.8), is due to the unprotonated form only.
LIPOPHILICITY vs. TAIL SIZE

Tischler, et al.

FIGURE 2

Lipophilicity vs. tail size
Tischler, et al.

FIGURE 3

RDP inhibition vs. lipophilicity

Notes:
- o - rifazacyclo series
- △ - rifazone series
- ▼ - DMB
- ▼ - DMB analog
- ■ - rifamazine
- □ - dirifampin
There is one anomalous group of derivatives to the generalized inhibition as a function of lipophilicity. These are the rifamycin dimers which we have earlier described. As can be seen from the positions of rifamazine \(\text{R N - N R} \) and dirifampin \(\text{R N - N N - N R} \) on Figure 3, they are both reasonably good inhibitors in spite of the fact that they are relatively hydrophilic. Either these dimers inhibit RDP through a different mechanism of interaction or they possess a desirable tail property not yet recognized.

It has been suggested that lipophilic rifamycins as a class, possibly due to their detergent-like nature, act as nonspecific inhibitors of enzymes in general. If this is so, then increasing inhibition of RDP with increasing lipophilicity would also result in increased inhibition of other polymerases not to mention enzymes in general. We have made a study of this possibility with many of the derivatives discussed here, and have found that the rifazacyclo series is rather nonspecific when RDP inhibition is compared to \(\text{E. coli} \) DNA-dependent DNA polymerase (DDP) inhibition. However, the rifazone series appears to be rather specific. \(\text{R-8}_2 \), for example, is approximately 33 times more inhibitory against RDP than DDP while \(\text{RC-16} \) is nearly equally inhibitory toward both enzymes. That data indicate to us that larger rifazone derivatives yet to be synthesized may be even more specific for RDP; even the \(K_i \) may increase.

We have also investigated the possibility of detergents with lipophilicities similar to the rifamycins being inhibitory toward RDP, and have found no correlation. For example, the \(R_m \) for the detergent Triton X-100 is nearly identical with \(\text{R-6}_2 \) and yet no inhibition of RDP is observed, even at concentrations as high as 0.1%.
In vitro specificity may or may not be significant in in vivo systems. It is possible for a nonspecific inhibitor of polymerases to act specifically within a cell because of cellular restrictions on the transport and accumulation of the compound. The compound may be so compartmentalized as to be able to inhibit only one polymerase. Work is currently in progress to determine the ability of some of these new rifamycins to inhibit transformation in tissue culture. In one study, RC-16 in the presence of amphotericin B, a compound often used to facilitate cell transport, was found to very effectively inhibit transformation in UCl-B cells infected with mouse leukemia virus without any sign of toxicity in the normal cells. In another study, currently in progress, R-8 alone has been found to be an effective inhibitor of transformation in chick fibroblast monolayers infected with Rous sarcoma virus, again with negligible toxicity to the untransformed cells.

Experimental Section

Ir spectra were taken on either a Perkin-Elmer Model 137 or a Beckman Model 5A grating infrared spectrometer. Nmr of all compounds except the rifamycin derivatives were recorded on a Varian Associates Model T-60 instrument, and the rifamycin derivatives were recorded on a Varian Associates Model HR-220 instrument. Rifamycin derivatives used as precursors were kindly supplied by Gruppo Lepetit S.p.A., Milan, Italy. Where analyses are indicated only by symbols of elements, analytical results obtained for these elements were within ± 0.4% of the theoretical values.
Reversed phase Tlc

Tlc plates were prepared with silica gel G (E. Merck AG-Darmstadt) spread at a thickness of 0.25 mm (50 g to 100 ml water). The plates were activated and developed in a 5% solution of Dow-Corning 200 Fluid (10 cc) in ether overnight. The ether was allowed to evaporate and then the rifamycin derivatives, dissolved in acetone (10 mg/ml), were spotted (~ 6 µg). The plates were developed in an acetone/water solution (2/3 v/v) saturated with the Dow-Corning Fluid. No means of visualizing was required as the spots are distinctly colored. In all cases the reported ΔRᶠ is the average of at least 5 determinations.

2-Azacycloundecanone

The cyclic ketone (5.00 g, 0.032 moles) is dissolved in chloroform (100 ml) in a flask fitted with a magnetic stirring bar and a thermometer. The solution is cooled in an ice bath to 5-10° and sulfuric acid (25 ml) is added. NaN₃ (2.23 g, 0.034 moles) is added approximately 10% at a time over a period of 1 hour. The ice bath is removed and the reaction is stirred for another hour. The contents of the reaction flask are then poured into ice and water (125 ml) and the resulting chloroform layer is separated. The water layer is washed with additional chloroform and the chloroform solutions are combined, washed with 1 N KOH (25 ml), dried over Na₂SO₄ and evaporated under vacuum to yield the product. The product is recrystallized from acetone. Yield = 4.7 g (91%); mp = 162-165°.

Nitrosations

Method 1 - for water soluble amine hydrochlorides

The amine (n moles) and water (~ 250 n ml) are added to a flask
The flask is placed in an ice bath and concentrated HCl (1.25 n moles) is added dropwise maintaining the temperature below 10°. After the addition the ice bath is removed and the solution is heated to 65°. A solution of NaNO₂ (1.25 n moles) in water (250 n ml) is added dropwise at a rate maintaining the temperature between 65 and 70°. After the addition the reaction is stirred at temperature for another 10 min. The flask is cooled to 25° and the contents are transferred to a separatory funnel where the product is extracted with benzene. The benzene solution is dried over Na₂SO₄ and evaporated under vacuum.

Dibutyl nitrosamine, n = 0.100, yield = 90%

Di-n-pentyl nitrosamine, n = 0.100, yield 98%

Di-n-hexyl nitrosamine, n = 0.125, yield = 85%

N-nitrosoapacyclooctane, n = 0.0945, yield = 57%,

bp₆.₅ = 96-98°, structure by nmr, ir

N-nitrosoapacyclononane, n = 0.0865, yield = 65%,

bp₁₀ = 118°, structure by nmr, ir, mp = 42-47°

N-nitrosoapacycloundecanone, n = 0.0555, yield = 86%,

structure by nmr, ir

N-nitrosoapacyclotridecanone, n = 0.0490, yield = 95%,

structure by nmr, ir

Method 2 - for water insoluble amine hydrochlorides

The amine (n moles) and acetic acid (1000 n ml) are added to a flask fitted with a thermometer, magnetic stirring bar, and addition

funnel. The flask is placed in an ice bath and concentrated HCl (1.25 n moles) is added dropwise, keeping the temperature below 10°. The solution is then heated to 25° and a solution of KNO₂ (3 n moles) in water (∼ 150 n ml) is added dropwise over a period of 20 min. The reaction is stirred for another 20 min after the addition. Water (∼ 1500 n ml) is then added, the product is extracted with ether, which, in turn, is washed with 5% Na₂CO₃, dried over Na₂SO₄ and evaporated under vacuum.

D-n-octylnitrosamine, n = 0.0249, yield 92%
N-nitroso-2,6-dimethyl-4-benzylpiperidine, n = 0.0345, yield = 68%
structure by nmr, ir

Lithium aluminum hydride (LAH) reductions

LAH was used for the reduction of amides to amines and of N-nitroso compounds to hydrazines. It was generally noted that the reaction time required for high conversions was quite sensitive to the freshness of the LAH. The use of fresh LAH resulted, in every case, in shorter reaction times, i.e., less than 4 hr reflux in THF or ether.

The compound to be reduced (n moles), either neat or dissolved in THF, ether or benzene, is added dropwise to a stirred refluxing mixture of LAH (n-2n moles) in THF or ether over a period of approximately 30 min. The reaction is maintained at reflux until the conversion is complete. (This is determined by the workup of 3 ml aliquots. Amide reduction is monitored by the loss of the carbonyl by ir. Nitrosamine reduction is monitored by the loss of the characteristic downfield α-protons by nmr.) The reaction is then cooled in a cold water bath. For x g of LAH used, a sequence of water (x ml), 15% NaOH (x ml) and water (3x ml) is added dropwise very slowly with vigorous stirring.
The resulting crystalline mixed hydroxides are removed by vacuum filtration. The hydroxides are washed with additional solvent. The combined filtrates are evaporated under vacuum to yield the crude product.

Amide reduction

Azacyclooctane-amide (n = 0.118) in THF (25 ml), LAH (0.20 moles)
in THF (125 ml), yield 99%

Azacyclononane-amide (n = 0.106) in THF (50 ml), LAH (0.21 moles)
in THF (150 ml), yield 88%

Azacycloundecane-amide (n = 0.0622) in THF (50 ml)*, LAH (0.13 moles) in THF (100 ml), yield 88%

Azacyclotridecane-amide (n = 0.0507) in THF (100 ml)*, LAH (y .108 moles) in THF (75 ml) yield 99%

Nitrosamine reduction

N-aminoazacyclooctane-nitrosamine (n = 0.0423) in THF (15 ml),
LAH (0.0810 moles) in THF (60 ml) yield = 80%, bp₂₁ = 67-73°

N-aminoazacyclononane-nitrosamine (n = 0.0513) in THF (50 ml),
LAH (0.103 moles) in THF (75 ml), yield = 43%, bp₁₉ = 87°

N-aminoazacycloundecane-nitrosamine (n = 0.0407) in THF (25 ml),
LAH (0.092 moles) in THF (75 ml), yield = 61%, bp₁₀ = 113°

N-aminoazacyclotridecane-nitrosamine (n = 0.0400) in THF (50 ml),
LAH (0.090 moles) in THF (50 ml), yield 64+, bp₆₀ = 95-99°

N,N-dibutylhydrazine-nitrosamine (n = 0.0633) in THF (25 ml),
LAH (0.132 moles) in THF (150 ml), yield = 86%, bp₈₀ = 109-113°

N,N-di-n-pentylhydrazine-nitrosamine (n = 0.0633) in THF (25 ml),
LAH (0.132 moles) in TH F (150 ml), yield = 85%, bp₁₅₁ = 124-130°

N,N-di-n-hexylhydrazine-nitrosamine (n = 0.084) neat, LAH (0.168 moles) in THF (125 ml), yield (dist) = 96% (74%), bp₁₅ = 124-128°

* Solution must be kept warm (~ 40°)
N,N-di-n-octylhydrazine-nitrosamine (n = 0.0204) in THF (25 ml),
LAH (0.0254 moles) in THF (30 ml), yield = 97%.

N-amino-2,6-dimethyl-4-benzylpiperidine-nitrosamine (n = 0.0216)
in THF (25 ml), LAH (0.0526 moles) in THF (50 ml), yield = 85%,
bp_{0.4} = 118-123°

Rifaldehyde condensations

Rifaldehyde (n moles) and the appropriate hydrazine (1.05 n moles) are dissolved in THF (~500 ml per 10 g rifaldehyde) and stirred at room temperature until the reaction is complete by silica gel TLC in THF (1-24 hr). The solvent is then evaporated under vacuum, and the product is pulverized, washed with n-hexane and dried again. The products can be further purified either by recrystallization from hexane or hexane-toluene or on a silica gel column eluted with ethyl acetate. Yields are all above 90%.

- RC-8 n = 0.0140
- RC-9 n = 0.0167
- RC-11 n = 0.0132
- RC-13 n = 0.0126
- R-4₂ n = 0.0165
- R-5₂ n = 0.0165
- R-6₂ n = 0.0140
- R-8₂ n = 0.0108
- DMB-analog n = 0.00917

The reaction has been found to be near quantitative when both the rifaldehyde and the hydrazine are of high purity. The hydrazines were usually distilled prior to use.
2,6-Dimethyl-4-benzylpyridine

2,6-Dimethyl-3,5-dicarboxy-4-benzylpyridine (23.0 g, 0.081 moles) was placed in a flask connected to a vigreux vacuum distillation apparatus. The system was evacuated to 85 mm by means of an air bleed valve. The flask was heated until all the distillate, which came over at 200-204°, was collected as a ruby red liquid. The red color was found to be due to a highly colored impurity which was removed by dissolving the product in n-hexane (250 ml), cooling to 0° for 1 hr, filtering out the red precipitate and evaporating the filtrate. Yield 14.1 g (89%).

2,6-Dimethyl-4-benzylpiperidine

2,6-Dimethyl-4-benzylpyridine (3.24 g, 0.0164 moles) was dissolved in 100% EtOH (30 ml) in a flask fitted with a reflux condenser. Na metal (4.5 g, 0.196 moles) was added gradually in small pieces to maintain a very gentle reflux. 5 min after the Na addition was complete, EtOH (15 ml) was added and the reaction was refluxed until all the Na reacted. (Note: When the Na was first added, the solution turned yellow; during the final reflux, the yellow color abruptly disappeared.) Water (20 ml) was then added dropwise. The EtOH was evaporated under vacuum, resulting in 2 phases which were transferred into a separatory funnel containing water (15 ml). The product was obtained by extraction with ether, drying over Na₂SO₄ and evaporation under vacuum. Yield 3.12 g (94%).

DMB-MI

DMB (0.200 g) was dissolved in methyl iodide (20 ml) and the solution was stirred at 25° overnight. Evaporation of the methyl iodide afforded the product in quantitative yield.
ACKNOWLEDGEMENT. This work was supported, in part, by the U.S. Atomic Energy Commission and, in part, by the Dow Chemical Company. Two of us (A.N.T. and F.M.T.) were supported by the Elsa U. Pardee Foundation for Cancer Research. One of us (L.J.L.) was a fellow of the Damon Runyon Cancer Fund, 1971-73.
Table I. RDP INHIBITION AND TAIL LIPOPHILICITY

<table>
<thead>
<tr>
<th>Derivative</th>
<th>Δ_{RM}</th>
<th>K_I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rifazacyclo-6</td>
<td>0.56</td>
<td>58</td>
</tr>
<tr>
<td>Rifazacyclo-7</td>
<td>0.68</td>
<td>33</td>
</tr>
<tr>
<td>Rifazacyclo-8</td>
<td>0.80</td>
<td>17</td>
</tr>
<tr>
<td>Rifazacyclo-9</td>
<td>0.92</td>
<td>9.0</td>
</tr>
<tr>
<td>Rifazacyclo-11</td>
<td>1.20</td>
<td>4.9</td>
</tr>
<tr>
<td>Rifazacyclo-13</td>
<td>1.49</td>
<td>3.0</td>
</tr>
<tr>
<td>Rifazacyclo-16</td>
<td>2.06</td>
<td>2.0</td>
</tr>
<tr>
<td>Rifazone-4</td>
<td>1.11</td>
<td>8.8</td>
</tr>
<tr>
<td>Rifazone-5</td>
<td>1.43</td>
<td>4.1</td>
</tr>
<tr>
<td>Rifazone-6</td>
<td>1.80</td>
<td>2.5</td>
</tr>
<tr>
<td>Rifazone-8</td>
<td>2.61</td>
<td>3.5</td>
</tr>
<tr>
<td>DMB-MI</td>
<td>~0</td>
<td>>100</td>
</tr>
<tr>
<td>DMB</td>
<td>0.85</td>
<td>19</td>
</tr>
<tr>
<td>DMB-analog</td>
<td>1.15</td>
<td>5.9</td>
</tr>
<tr>
<td>Rifamazine</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Dirifampin</td>
<td>0.15</td>
<td>25</td>
</tr>
</tbody>
</table>
REFERENCES

15. G. Pelizza, G. C. Lancini, G. C. Allievi and G. G. Gallo,

23. M. J. Bissell and A. N. Tischler; to be published.
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.