Optimization of a phase separation based magnetic-stirring salt-induced liquid-liquid microextraction method for determination of fluoroquinolones in food

Permalink
https://escholarship.org/uc/item/03j27375

Authors
Gao, M
Wang, H
Ma, M
et al.

Publication Date
2015-05-15

DOI
10.1016/j.foodchem.2014.11.132

Peer reviewed
Analytical Methods

Optimization of a phase separation based magnetic-stirring salt-induced liquid–liquid microextraction method for determination of fluoroquinolones in food

Ming Gao, Huili Wang, Meiping Ma, Yuna Zhang, Xiaohan Yin, Randy A. Dahlgren, Dongli Du, Xuedong Wang

College of Environmental Sciences and Public Health, Wenzhou Medical University, Wenzhou 325035, China
Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA

Abstract

Herein, we developed a novel integrated apparatus to perform phase separation based on magnetic-stirring, salt-induced, liquid–liquid microextraction for determination of five fluoroquinolones in animal-based foods by HPLC analysis. The novel integrated apparatus consisted of three simple HDPE (high density polyethylene) parts that were used to separate the solvent from the aqueous solution prior to retrieving the extractant. The extraction parameters were optimized using the response surface method based on central composite design: 791 L of acetone solvent, 2.5 g of Na₂SO₄, pH 1.7, 3.0 min of stir time, and 5.5 min centrifugation. The limits of detection were 0.07–0.53 μg kg⁻¹ and recoveries were 91.6–105.0% for the five fluoroquinolones from milk, eggs and honey. This method is easily constructed from inexpensive materials, extraction efficiency is high, and the approach is compatible with HPLC analysis. Thus, it has excellent prospects for sample pre-treatment and analysis of fluoroquinolones in animal-based foods.

1. Introduction

Pharmaceuticals and personal care products (PPCPs) are an emerging environmental concern, among which the fluoroquinolones (FQs) are the most important and growing class of potential environmental contaminants (Espinosa-Mansilla, Muñoz de la Peña, González Gómez, & Salinas López, 2006). FQs are widely used as antibacterial agents in human and veterinary medicines due to their broad spectrum activity against both Gram-positive and Gram-negative bacteria through inhibition of DNA gyrase (Gao et al., 2011). They have a common 4-oxo-1,4-dihydroquinoline skeleton, where the pharmacophore unit consists of a pyridine ring with carboxyl group, a piperazinyl group and a fluorine atom placed at positions 3, 6 and 7 (Gajda, Posyniak, Zmudzki, Gbylik, & Bladek, 2012). Fleroxacin (FLE), ofloxacin (OFL), norfloxacin (NOR) and ciprofloxacin (CIP) are third-generation FQs used in treating human and animal diseases, while enrofloxacin (ENR) is used only for treating animal diseases. These five FQs are used extensively in China clinical medicine, and thus they were chosen as the representative FQs analytes in this investigation (Wang, Zhou, & Zeng, 2005). With the overuse of these FQs in animal husbandry and aquaculture, they are widely detected in all kinds of environmental matrices, especially in animal-based foods such as milk (Xia, Yang, & Liu, 2012), eggs (Chu, Wang, & Chu, 2002) and honey (Gao, Zheng, Luo, Ding, & Feng, 2012).

To date, many methods have been developed for the determination of FQs, such as spectroscopy (Motwani, Chopra, Ahmad, & Khar, 2007), capillary electrophoresis (Lombardo-Agüí, García-Campaña, Gámiz-Gracia, & Blanco, 2010), spectrofluorometry (Du, Yang, & Wang, 2004; El-Kommos, Saleh, El-Gizawi, & Abou-Elwafa, 2003; Xia et al., 2012; Zhu, Gong, & Yu, 2008), potentiometric titration (Park, Jeong, Lee, Lee, & Baek, 2000) and high performance liquid chromatography (HPLC) (Ebrahimpour, Yamini, & Moradi, 2012; Vazquez, Vazquez, Galera, & Garcia, 2012) coupled with mass spectrometry (MS) (Garcés, Zerzanová, Kucerá, Barrón, & Barbosa, 2006). Because of the interference from complex matrices in animal-based foods, these analytical methods often require extensive sample preparation. Accordingly, there is considerable interest in developing a cost-effective, efficient and reliable extraction method for the analysis of complex samples prior to FQ quantification.
Several pre-treatment methods, including solid-phase extraction (SPE) (Hermo, Nemutlu, Kir, Barron, & Barbosa, 2008), liquid–liquid extraction (LLE) (Chu et al., 2002), stir bar sorption extraction (SBSE) (Huang, Yuan, & Lin, 2011), microwave-assisted extraction (MAE) (Hermo, Barron, & Barbosa, 2005), cloud point extraction (CPE) (Wu, Zhao, & Du, 2010) and supercritical fluid extraction (SFE) (Shim, Lee, Kim, Lee, & Kim, 2003) have been developed. Major limitations of these methods include time-consuming extraction procedures, low enrichment factor, tedious operation and creation of a large amount of hazardous organic solvent waste. In recent years, some novel liquid-phase microextraction (LPME) techniques, such as dispersive liquid–liquid microextraction (DLLME), ultrasound-assisted DLLME (Yan, Wang, Qin, Liu, & Du, 2011), ionic liquid-based homogeneous liquid–liquid microextraction (IL-HLLME) (Gao et al., 2011) and ion pair-based surfactant-assisted microextraction (IP-SAME) (Ebrahimipour et al., 2012) have been developed based on a ternary solvent system with the advantages of simplicity, speed, low cost, good recovery and high enrichment factors. However, a major drawback for the use of non-polar, water-immiscible, organic solvents in all type of LPME is their low dielectric constant, making extraction of polar or charges solutes relatively poor (Gupta, Archania, & Verma, 2009). More-polar solvents, such as acetonitrile and ethanol, which provide solubility for polar to non-polar compounds are frequently water-miscible and, thus, cannot be used in conventional LPME.

Salting-out is a process of electrolyte addition to an aqueous phase in order to increase the distribution ratio of a particular solute. The term also connotes reduction of mutual miscibility of two liquids by addition of electrolytes. Weak intermolecular forces, e.g., hydrogen bonds, between organic molecules or non-electrolytes and water are easily disrupted by the hydration of electrolytes. Salting-out assisted liquid–liquid microextraction (SALLME) is based on phase separation of water-miscible organic solvents from the aqueous solutions at high salt concentration (Tsai et al., 2009). It uses water-miscible organic solvents that, generally, have low toxicity and small amounts of salt that cause little pollution. Additionally, this method has the advantages of being simple and sensitive as well as using less solvents, and the product is compatible for subsequent analysis by HPLC (Cai et al., 2007; Myasein, Kim, Zhang, Wu, & Tawakol, 2009). In SALLME, a glass centrifuge tube is often used as the extraction device. However, collection and measurement of microliter volumes of organic phase or vessels to classical DLLME that allows for the use of lower density organic solvent, using either a narrow-necked glass tube (Ye, Zhou, & Wang, 2007) or a glass vial (Cheng, Matsadiq, Liu, Zhou, & Chen, 2011). Hashemi, Beyranvand, Mansur, and Ghasvand (2009) introduced a home-made narrow-necked glass tube for the effective collection of extractant, and inserted it into a centrifuge tube for centrifugation after extraction. Zhang, Shi, Yu, and Feng (2011), designed a special flask equipped with two narrow open necks with one having a capillary tip to facilitate the DLLME process. However, all of these glass-based devices are fragile and require special design, therefore their cost is relatively high and their commercial availability is limited (Wang, Cheng, Zhou, Wang, & Cheng, 2013).

Recently, a cheap, flexible and disposable polyethylene Pasteur pipette was introduced as an extraction devices for low-density solvent-based DLLME (Guo & Lee, 2011; Hu, Wu, & Feng, 2010). Cheng et al. (2011) developed an apparatus consisting of a dropper and a sample vial to perform extraction, separation and concentration of trace pesticides from solvents one step. The bulb end of the cut polyethylene dropper was inserted into the neck of the sample vial and the tip end of the polyethylene dropper was cut to an appropriate length (Wang et al., 2013). The plastic pipette afforded advantages of low cost, use of easily available materials and ease of operation. However, the major drawback of this apparatus is that the extracted organic phase was difficult to completely retrieve because the organic phase and aqueous solution were not separated prior to collection of the extractant. The repartition of extractant into the aqueous phase can occur over the relatively long retrieval time, which will result in a low extraction recovery.

To overcome the above-mentioned limitations of current methods, this study developed and optimized a novel integrated apparatus and methodology for extraction of FQs by means of a phase separation method based magnetic-stirring salt-induced liquid–liquid microextraction (PS-MSLM). The proposed PS-MSLM method was optimized for major operational factors (stirring time, pH, salt kind and volume, solvent kind and volume, and centrifugation time) using a response surface method (RSM) based on central composite design (CCD). The optimized method was compared with other commonly used LPME methods to evaluate its advantages and feasibility for determining trace levels of FQs in milk, honey and eggs. To the best of our knowledge, this integrated apparatus, designed to completely and rapidly separate the organic and aqueous phases prior to collection of the extractant, is the first reported use of this approach for determination of FQs in animal-based foods.

2. Experimental

2.1. Reagents and materials

Analytical standards for fleroxacin (FLE), ofloxacin (OFL), norfloxacin (NOR), ciprofloxacin (CIP) and enrofloxacin (ENR) were purchased from J&K Chemical Corporation (Shanghai, China) and used without further purification. HPLC-grade ethanol, methanol, ethyl acetate, acetonitrile and acetone were sourced from Merck Corporation (Shanghai, China). Salts (magnesium sulfate (MgSO4), sodium sulfate (Na2SO4), ammonium sulfate ((NH4)2SO4) and ammonium acetate (CH3COONH4)) with purities ≥99% were obtained from Aladdin Industrial Co. Ltd. (Shanghai, China).

Stock standard solutions (1000 µg ml−1) for each FQ were prepared by dissolving each compound in methanol and stored at 4°C. Stock solutions were diluted with methanol to prepare a secondary mix stock solution of 10 µg ml−1. Mixtures of standard working solutions for extraction at different concentrations were prepared by dilution with Milli-Q ultrapure water (Millipore, Bedford, USA).

Milk, chicken egg and honey samples were produced by Jiangxin Milk Company, Ronghe Agricultural Product Company and Fujian XinZhiYuan Biological Company, China, respectively, and purchased from Baixin Supermarket, Wenzhou, China. These samples were mixed with a vortex mixer for 5.0 min and stored in amber bottles at 4°C until analysis within 1 week.

2.2. Instrumentation

FQs were analyzed with an Agilent 1260 HPLC equipped with a fluorescence detector (FLD). A Zorbax Eclipse XDB-C18 column (150 mm × 4.6 mm, 5 µm particle size) was used and injections were performed manually using a 20.0-µL sample loop. The operating conditions were as follows: mobile phase, methanol–acetonitrile–water (15:5:80, v/v; water consisting of 3.4 mL orthophosphoric acid and 6.0 mL triethylamine per liter); flow rate, 0.8 mL min−1; column temperature, 40 ± 1°C; and excitation and emission wavelengths of 290 and 455 nm, respectively. Solutions were stirred with a model HJ-6A magnetic heater–stirrer with an 8 mm × 4 mm stirs bar (Jiangsu Jintan Medical Instrument Factory
2.3. PS-MSLM procedure

A schematic of the integrated PS-MSLM procedure is shown in Fig. 1. This novel integrated device consists of three parts: (1) a high-density polyethylene (HDPE) centrifuge tube (8 cm × 1.6 cm external diameter, 1.4 cm internal diameter, Fig. 1A); (2) an inverted cut HDPE dropper (1 cm × 1.4 cm external diameter joined to a 3 cm length of capillary tube, Fig. 1K); and (3) a “V” HDPE capillary tube (10 cm × 0.5 cm internal diameter, Fig. 1K). The inverted cut disposable HDPE dropper was inserted into the centrifuge tube, and the “V” tube was easily attached/detached from the inverted HDPE dropper (Fig. 1H and I).

In operation, the sample solution was first added to the centrifuge tube followed by the solvent, which was water-miscible and lower density than water (Fig. 1A and C). After stirring and centrifugation, the sedimented proteins and other interfering compounds were discarded (Fig. 1B and C). Finally, an appropriate amount of salt was added to the remaining solution (Fig. 1D). After salting-out, and following stirring and centrifugation, the solvent floated on the top of the sample (Fig. 1E and F). The inverted HDPE dropper was then placed into the sample solution and the extractant was extruded through the tip of the dropper (Fig. 1G and H). When the extractant was fully transferred into the “V” tube, the “V” tube was detached and the extractant was collected with a micro-syringe (Fig. 1I). The extractant was then dried using a gentle nitrogen flow, dissolved with 50 μL of mobile phase and quantified by HPLC-FLD analysis (Fig. 1J).

For pre-treatment of food samples, 5 mL of milk, 1 mL of eggs (combined yolk and albumen) or 1 mL of honey were placed into triplicate 10 mL centrifuge tubes. Each sample was added using ultrapure water to obtain a final volume of 6 mL, and followed by acidification to pH 1.0 with sulfuric acid. The water-miscible organic solvent (500–1100 μL) was slowly introduced into the sample solution with a 1000-μL micropipette. After 2 min of magnetic stirring at 1400 rpm, the emulsion was centrifuged at 4000 rpm for 3 min resulting in sedimentation of protein impurities. The supernatant was transferred to another centrifuge tube and 2.0–4.5 g of salt was added followed by magnetic-stirring for 0–8 min at 1400 rpm and centrifugation at 4000 rpm for 0–8 min. Finally, the solvent was isolated as the top layer of the sample solution and recovered using the inverted dropper as described above.

2.4. Experimental design

The optimization experiments were randomized in order to minimize the effects of uncontrolled factors. As it was not possible to complete each experiment during a single work day, they were divided into two blocks and carried out in two sequential days to remove any variations caused by changes occurring over the course of the experiments (Sereshiti, Izadmanesh, & Samadi, 2011). Four main factors, stirring time (A), pH (B), solvent volume (C) and centrifugation time (D), were chosen on the basis of the literature and preliminary experiments. For each variable, high and low set points were selected to construct an orthogonal design (Supplementary Table 1). Central composite design (CCD) was used to optimize values for each factor based on extraction recovery (ER). The CCD included 22 treatments in five levels (−α, −1, 0, +1, +α) for four factors, and consisting of two blocks (Supplementary Table 2). It contained an imbedded half-fraction factorial design (Nf = 2^4−1) with a set of center points (N0) that was augmented with a group of “star points” (N4 = 2f) that allow for estimation of curvature (Sereshiti, Heravi, & Samadi, 2012), where “f” indicates the number of the experimental factors. As a result, the 22 treatments included 8 half-fraction factorial design points, 8 “star points” and 6 center points. The average extraction recovery (ER) was considered as the “experimental response” to evaluate the method performance (Sereshiti et al., 2012), which was computed by Eq. (1):

\[ER = \frac{C_{\text{sed}} \times V_{\text{sed}}}{C_0 \times V_{\text{aq}}} \times 100 \]

where \(C_{\text{sed}} \) is concentration of the analyte in the sedimented phase; \(C_0 \) is the initial concentration of analyte in the sample solution; and \(V_{\text{sed}} \) and \(V_{\text{aq}} \) are the volumes of sedimented and sample solutions, respectively (Sereshiti et al., 2012). A quadratic polynomial model Eq. (2) was used to predict the response of dependent variables for the ERs of FQs:
\[Y = b_0 + \sum_{i=1}^{4} b_i x_i + \sum_{j=1}^{6} b_{ij} x_i x_j + \sum_{i=1}^{4} b_{i2} x_i^2 \]

(2)

where \(Y \) is the dependent variable, \(x_i \) is the independent variable, \(b_0 \) is the intercept, \(b_i \) is the coefficient of linear effect, \(b_{ij} \) is the coefficient of interaction effect, and \(b_{i2} \) is the coefficient of the squared effect (Mohammadi et al., 2013). The software package Design-Expert 8.0.5 (Minneapolis, USA) was employed to analyze the data and experimental design. Analysis of variance (ANOVA) was used to evaluate the model and to obtain response surfaces for factor optimization.

3. Results and discussion

3.1. Selection of solvent and salt

In PS-MSLM, the selection of an appropriate solvent is based on basic requirements, such as lower density than water, miscibility with the aqueous phase, ease of phase separation in high salt concentrations, good chromatographic behavior, and high extraction efficiency for target analytes. According to these considerations, ethyl acetate, ethanol, methanol, acetonitrile and acetone were examined for their “salting-out” phenomena and extraction efficiencies for FQs (Supplementary Fig. 1). Using 5 ml sample and 0.8 ml solvent, we examined the salting-out effect of four salts (MgSO₄, Na₂SO₄, CH₃COONH₄ and (NH₄)₂SO₄) in the range 2–4.5 g. The methanol–water mixture did not show any phase separation even when the mixture was saturated with salts. Additionally, ethyl acetate and ethanol showed indistinct phase separation even after centrifugation. In contrast, water–acetonitrile and water–acetone mixtures gave a clear separation in the presence of all four salts under the conditions. Similarly, the volume of organic solvent-rich phase/water-rich phase after separation was 0.5/5.8 ml for water–acetonitrile and 0.5/5.6 ml for water–acetone. The highest ER was observed in water/acetonitrile/Na₂SO₄ (94.7 ± 3.2%), followed by water/acetonitrile/(NH₄)₂SO₄ (90.1 ± 2.7%) and CH₃COONH₄ (14.2 ± 1.5%) (Supplementary Fig. 1). As a result, acetone and Na₂SO₄ were chosen for subsequent experiments.

In addition, the effect of salt concentration on extraction efficiency was investigated by adding different concentrations of Na₂SO₄ (2.0, 2.5, 3.0, 3.5, 4.0 and 4.5 g) to the 5.0 ml water/0.5–1.1 ml acetone system. Preliminary experimental results showed that when 1.5 g of Na₂SO₄ was added, no obvious phase separation occurred suggesting an insufficient amount to induce the salting-out process. As shown in Supplementary Fig. 2, a significant increase in ER from 82.4% to 95.3% occurred with increasing Na₂SO₄ concentrations from 2.0 to 2.5 g. However, with further additions of Na₂SO₄ from 2.5 to 4.5 g, the ER remained nearly constant (~94%), implying the occurrence of salt saturation. When salts were added in a non-saturated state, some researchers found that salt additions to the aqueous sample had differential effects on microextraction: it may enhance, not influence, or limit the rate of diffusion of the target analyte into the microdrop (Psilakis & Kalogerakis, 2001), thus affecting the extraction efficiency except for salting-out effect (Wang et al., 2012). In our study, the addition of 2.5 g of Na₂SO₄ was selected as the optimum salt amount for subsequent experiments.

3.2. Optimization of the PS-MSLM procedures using CCD

The experimental design matrix, which is composed of the number and order of the experiments, levels of factors in each experiment and the extraction recovery, is summarized in Supplementary Table 2. ANOVA was used to evaluate the significance of the model equation and related terms (Supplementary Table 3). The model was highly significant and the “probe > F” value for the “lack of fit component” was 0.2736, which means the other factors in this experiment had a small amount of interference and the model represents the data well. The significant model, with a “probe > F” value less than 0.0001, indicated that the equation is a good fit for representing the relationship between ER and the four main factors. Based on the significant effects for “probe > F” values <0.0500, it was concluded that A, B, C, D, AB, AC, AD, BC, A², B², C² and D² all showed significant effects. A second-order polynomial provided the strongest statistical fit and was considered as the best response surface model to fit the experimental data (Seresheti et al., 2012). As can be seen in the Eq. (3), there were four main effects (A, B, C and D), four two-factor interaction effects (AB, AC, AD and BC), and four curvature effects (A², B², C² and D²):

\[Y = b_0 + b_1A + b_2B + b_3C + b_4D + b_{AB} + b_{AC} + b_{AD} + b_{BC} + b_{BD} + b_{CD} + b_{12}A^2 + b_{13}B^2 + b_{14}C^2 + b_{15}D^2 \]

(3)

with \(b_0 = -58.22; b_1 = 2.31; b_2 = -2.01; b_3 = 0.32; b_4 = 7.27; b_{AB} = 0.10; b_{AC} = -1.54 \times 10^{-3}; b_{AD} = -0.24; b_{BC} = -1.23 \times 10^{-2}; b_{BD} = -0.064; b_{CD} = 1.25 \times 10^{-3}; b_{12} = -0.43; b_{13} = -0.17; b_{14} = -1.78 \) and \(b_{15} = -0.54 \). Here Y is the extraction recovery, \(b_0 \) is the intercept and \(b_1 \) to \(b_{15} \) are parameter coefficients. The relationship between the related effect and the response is indicated by “+” or “−” for each coefficient. A “+” means the coefficient and the extraction recovery has a positive relationship, while a “−” means a negative relationship. The absolute value of the coefficients indicates the strength of the relationship between the coefficient and the extraction recovery (Y).

The goodness of fit for the polynomial model was expressed by the coefficient of determination (\(R^2 \); adjusted-\(R^2 \)). The \(R^2 \) (0.9836) is a measure of the amount of variance around the average explained by the model. The adjusted-\(R^2 \) (0.9992) is the \(R^2 \) adjusted for the number of terms in the model, and it decreases as the number of terms in the model increases if those additional terms do not add value to the model (Seresheti et al., 2012). The high \(R^2 \) values indicated that we can use the model to analyze and optimize the effects of extraction conditions on ER. As can be seen from Supplementary Fig. 3a, most of the data points were scattered near the regression line, suggesting a good correlation between predicted and actual responses and a good fit for the quadratic model. In addition, the residual plots were scattered randomly (Supplementary Fig. 3b) indicating that the variance of the experimental measurements was constant for all values of Y.

In order to obtain more details of the experimental factors on the extraction recovery, 3D response surfaces and contour lines were plotted. These plots represent the relationship between the response and levels of two factors simultaneously, while holding the other factors fixed at their central levels (Seresheti et al., 2011). The 3D response surfaces and contour lines shown in Fig. 2 represent the relationship between recovery and the four experimental factors (stirring time, pH, solvent volume and centrifugation time). For example, Fig. 2a describes the 3D response surface and contour line for the effect of stirring time and pH on ER under fixed conditions of 800-μl extractant volume and 5-min centrifugation time. The ERs of FQs increased with increasing stir time from 0 to 3 min and pH from 1.0 to 1.7. However, with a further increase in stir time from 3 to 10 min and pH from 1.7 to 7.0, the ERs of FQs declined. Fig. 2b depicts the 3D response surface and contour line for the effect of stir time and solvent volume on ER when the pH and centrifugation time were set at 4.0 and 5 min, respectively. The maximum ER was observed at 3 min stir time.
and 791 µL of solvent. With further increases in stir time (3–10 min) and pH (1.7–7.0), the ERs decreased sharply.

Fig. 2c demonstrates the 3D response surface and contour line for the effect of stir time and centrifugation time on the ERs when the pH and extractant volume were set at 4.0 and 800 µL, respectively. When the stir time increased from 0 to 3 min and the centrifugation time increased from 0 to 5.5 min, the ERs gradually increased. The maximum ER was observed at approximately 3 min stir time and 5.5 min centrifugation time. Under the fixed conditions of 4.0 min stir time and 5.0 min centrifugation time, the effects of pH and solvent volume on the ERs were evaluated (Fig. 2d). With increasing pH from 1.0 to 1.7 and extractant volume from 500 to 791 µL, the ER reached a maximum point, and then quickly declined with the further increases of pH (1.7–7.0) and solvent volume (791–1100 µL). After rigorous analysis of the interaction factors in Fig. 2, the optimal set points for the four parameters were determined to be 3 min stir time, pH = 1.7, 791 µL solvent volume and 5.5 min centrifugation time.

3.3. Method evaluation

Under the optimized experimental conditions determined in this study, the performance of PS-MSLM was evaluated for linear range, limits of detection (LODs), precision and ER (Table 2). The coefficients of determination (R^2) for linearity of standard curves for the five FQs were in the range of 0.9989–0.9998. The limits of detection (LODs at S/N = 3) for milk, egg and honey samples were in the range 0.09–0.16 µg kg$^{-1}$ for FLE; 0.35–0.47 µg kg$^{-1}$ for OFL; 0.34–0.53 µg kg$^{-1}$ for NOR; 0.11–0.21 µg kg$^{-1}$ for CIP and 0.07–0.10 µg kg$^{-1}$ for ENR. The linear dynamic range (LDR) was 0.50–500 µg kg$^{-1}$ for FLE and CIP, 1.50–500 µg kg$^{-1}$ for OFL and NOR and 0.25–250 µg kg$^{-1}$ for ENR. The precision study was carried out in six parallel experiments by determining the intra- and inter-day RSDs (relative standard deviations) at three fortification levels of FQs. The RSDs varied between 0.65% and 5.28% for intra-day analysis, and ranged from 2.05% to 5.99% for inter-day analysis (Table 1).

3.4. Analysis of animal-based foods

The PS-MSLM method was applied for the determination of five FQs in milk, egg and honey samples. Fig. 3 illustrates a typical chromatogram for milk, egg and honey samples at fortification levels of 9.7, 9.1 and 7.0 µg kg$^{-1}$, respectively, for the five FQs using the optimized PS-MSLM method. The relative recovery (RR) was used to appraise the analytical performance of the optimized method following Eq. (4):

$$RR = \frac{C_{\text{found}} - C_{\text{real}}}{C_{\text{added}}}$$

where C_{found}, C_{real} and C_{added} are the concentrations of analyte in the final solution after addition of a known amount of a standard into the animal-based food sample, the concentration of analyte in the food sample, and the concentration of a known amount of the standard which was spiked into the food sample, respectively. The results showed that the concentrations of FLE, OFL, NOR and

Table 1

Intra-day and inter-day precision of five FQs (n = 6) by the proposed method.

<table>
<thead>
<tr>
<th>Analytes</th>
<th>Intra-day precision (RSD%, n = 6)</th>
<th>Inter-day precision (RSD%, n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>FLE</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td>OFL</td>
<td>5.2</td>
<td>1.6</td>
</tr>
<tr>
<td>NOR</td>
<td>4.9</td>
<td>4.1</td>
</tr>
<tr>
<td>CIP</td>
<td>5.3</td>
<td>2.2</td>
</tr>
<tr>
<td>ENR</td>
<td>3.1</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Note: (1) **"high"** indicates 48.5 µg kg$^{-1}$ for milk, 45.5 µg kg$^{-1}$ for eggs and 35.2 µg kg$^{-1}$ for honey; (2) **"medium"** indicates 19.4 µg kg$^{-1}$ for milk, 18.2 µg kg$^{-1}$ for eggs and 14.1 µg kg$^{-1}$ for honey; and (3) **"low"** indicates 9.7 µg kg$^{-1}$ for milk, 9.1 µg kg$^{-1}$ for eggs and 7.0 µg kg$^{-1}$ for honey, respectively.
The analytical performance of the PS-MSLM pretreatment method.

Table 2
The analytical performance of the PS-MSLM pretreatment method.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Analyte</th>
<th>Regression equations</th>
<th>Correlation coefficient (R^2)</th>
<th>Linear range (μg kg$^{-1}$)</th>
<th>LOD (μg kg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk</td>
<td>FLE</td>
<td>$y = 0.2946x - 0.0588$</td>
<td>0.9997</td>
<td>0.50–500</td>
<td>0.133</td>
</tr>
<tr>
<td></td>
<td>OFL</td>
<td>$y = 0.0386x - 0.0310$</td>
<td>0.9997</td>
<td>2.00–500</td>
<td>0.466</td>
</tr>
<tr>
<td></td>
<td>NOR</td>
<td>$y = 0.0937x - 0.0047$</td>
<td>0.9998</td>
<td>2.00–500</td>
<td>0.521</td>
</tr>
<tr>
<td></td>
<td>CIP</td>
<td>$y = 0.4223x - 0.0956$</td>
<td>0.9996</td>
<td>1.00–500</td>
<td>0.198</td>
</tr>
<tr>
<td></td>
<td>ENR</td>
<td>$y = 0.8438x + 0.5344$</td>
<td>0.9989</td>
<td>0.50–250</td>
<td>0.092</td>
</tr>
<tr>
<td>Eggs</td>
<td>FLE</td>
<td>$y = 0.2947x - 0.0538$</td>
<td>0.9997</td>
<td>1.00–500</td>
<td>0.158</td>
</tr>
<tr>
<td></td>
<td>OFL</td>
<td>$y = 0.0384x - 0.0406$</td>
<td>0.9993</td>
<td>2.00–500</td>
<td>0.449</td>
</tr>
<tr>
<td></td>
<td>NOR</td>
<td>$y = 0.095x + 0.0293$</td>
<td>0.9997</td>
<td>2.00–500</td>
<td>0.526</td>
</tr>
<tr>
<td></td>
<td>CIP</td>
<td>$y = 0.4242x - 0.3726$</td>
<td>0.9994</td>
<td>1.00–500</td>
<td>0.209</td>
</tr>
<tr>
<td></td>
<td>ENR</td>
<td>$y = 0.8465x + 0.0444$</td>
<td>0.9995</td>
<td>0.50–250</td>
<td>0.104</td>
</tr>
<tr>
<td>Honey</td>
<td>FLE</td>
<td>$y = 0.2811x + 0.1471$</td>
<td>0.9993</td>
<td>0.50–500</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td>OFL</td>
<td>$y = 0.0372x - 0.0081$</td>
<td>0.9992</td>
<td>1.50–500</td>
<td>0.340</td>
</tr>
<tr>
<td></td>
<td>NOR</td>
<td>$y = 0.109x + 0.0108$</td>
<td>0.9998</td>
<td>1.50–500</td>
<td>0.344</td>
</tr>
<tr>
<td></td>
<td>CIP</td>
<td>$y = 0.3959x + 0.2001$</td>
<td>0.9997</td>
<td>0.50–500</td>
<td>0.113</td>
</tr>
<tr>
<td></td>
<td>ENR</td>
<td>$y = 0.8531x + 0.2383$</td>
<td>0.9991</td>
<td>0.25–250</td>
<td>0.067</td>
</tr>
</tbody>
</table>

Note: (1) LOD was calculated according to S/N = 3; (2) μg L$^{-1}$ was converted to μg kg$^{-1}$ on the basis of the following matrix densities: 1.03 g mL$^{-1}$ for milk; 1.11 g mL$^{-1}$ for egg; and 1.42 g mL$^{-1}$ for honey, respectively.

CIP were all below their respective detectable level in the milk, egg and honey samples. However, ENR was detected in the range of 2.93–4.58 μg kg$^{-1}$ and 6.83–9.84 μg kg$^{-1}$ in milk and egg samples, respectively (Table 3). For the three spiked levels, the RRs for the five FQs were in the range of 92.1–102.3% for milk, 92.2–105.0% for eggs and 91.6–104.0% for honey. These results collectively demonstrate that the optimal PS-MSLM method can be effectively used to analyze trace levels of FQs in animal-based foods with high precision and accuracy.

3.5. Comparison of PS-MSLM with other pretreatment methods

The PS-MSLM method developed and optimized in this study was compared with other methods from the literature, such as combined with liquid–liquid extraction (LLE) (Ho, Sin, Tang, Chung, & Siu, 2004), pressurized liquid extraction (PLE) (Herranz, Moreno-Bondi, & Marazuela, 2007; Luo, Ma, & Feng, 2010), dispersive solid-phase extraction (DSPE) (Pena-Pereira, Lavilla, & Bendicho, 2010), magnetic solid-phase extraction (MSPE) (Xu, Jiang, Lin, & Jia, 2012) and solid-phase extraction (SPE) (Rose, Bygrave, & Stubbings, 1998). Results were compared with reference to sample preparation time, LOD and ER (Supplementary Table 3).

Table 3
Analytical performance for FQ quantification by the optimized method in milk, egg and honey samples (mean ± SD, n = 6).

<table>
<thead>
<tr>
<th>FQs</th>
<th>Milk Blank Added (μg kg$^{-1}$)</th>
<th>Found (μg kg$^{-1}$)</th>
<th>RR (%)</th>
<th>Eggs Blank Added (μg kg$^{-1}$)</th>
<th>Found (μg kg$^{-1}$)</th>
<th>RR (%)</th>
<th>Honey Blank Added (μg kg$^{-1}$)</th>
<th>Found (μg kg$^{-1}$)</th>
<th>RR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLE</td>
<td>ND</td>
<td>9.30 ± 0.81</td>
<td>95.8</td>
<td>ND</td>
<td>8.34 ± 0.51</td>
<td>92.2</td>
<td>ND</td>
<td>6.67 ± 0.57</td>
<td>94.7</td>
</tr>
<tr>
<td>OFL</td>
<td>ND</td>
<td>9.18 ± 0.27</td>
<td>93.6</td>
<td>ND</td>
<td>16.70 ± 0.55</td>
<td>92.7</td>
<td>ND</td>
<td>12.96 ± 0.47</td>
<td>91.9</td>
</tr>
<tr>
<td>NOR</td>
<td>ND</td>
<td>49.64 ± 0.91</td>
<td>102.3</td>
<td>ND</td>
<td>44.26 ± 0.77</td>
<td>98.3</td>
<td>ND</td>
<td>34.76 ± 0.77</td>
<td>98.7</td>
</tr>
<tr>
<td>CIP</td>
<td>ND</td>
<td>9.36 ± 0.35</td>
<td>96.6</td>
<td>ND</td>
<td>9.08 ± 0.69</td>
<td>100.9</td>
<td>ND</td>
<td>6.45 ± 0.35</td>
<td>91.6</td>
</tr>
<tr>
<td>ENR</td>
<td>ND</td>
<td>19.07 ± 0.16</td>
<td>98.2</td>
<td>ND</td>
<td>18.27 ± 0.27</td>
<td>101.3</td>
<td>ND</td>
<td>13.45 ± 0.23</td>
<td>95.5</td>
</tr>
<tr>
<td>FLE</td>
<td>ND</td>
<td>48.47 ± 0.61</td>
<td>99.8</td>
<td>ND</td>
<td>45.51 ± 0.77</td>
<td>101.0</td>
<td>ND</td>
<td>34.69 ± 0.61</td>
<td>98.5</td>
</tr>
<tr>
<td>OFL</td>
<td>ND</td>
<td>18.97 ± 0.25</td>
<td>97.7</td>
<td>ND</td>
<td>18.20 ± 0.25</td>
<td>100.1</td>
<td>ND</td>
<td>14.60 ± 0.38</td>
<td>103.6</td>
</tr>
<tr>
<td>NOR</td>
<td>ND</td>
<td>9.19 ± 0.28</td>
<td>94.5</td>
<td>ND</td>
<td>9.47 ± 0.35</td>
<td>105.0</td>
<td>ND</td>
<td>7.27 ± 0.59</td>
<td>103.3</td>
</tr>
<tr>
<td>CIP</td>
<td>ND</td>
<td>48.76 ± 0.79</td>
<td>100.4</td>
<td>ND</td>
<td>7.11 ± 0.67</td>
<td>45.5</td>
<td>ND</td>
<td>51.93 ± 0.62</td>
<td>100.9</td>
</tr>
<tr>
<td>ENR</td>
<td>ND</td>
<td>9.84 ± 0.54</td>
<td>92.1</td>
<td>ND</td>
<td>9.43 ± 0.57</td>
<td>104.7</td>
<td>ND</td>
<td>6.85 ± 0.29</td>
<td>97.4</td>
</tr>
<tr>
<td>FLE</td>
<td>ND</td>
<td>19.15 ± 0.32</td>
<td>98.6</td>
<td>ND</td>
<td>16.97 ± 0.31</td>
<td>94.2</td>
<td>ND</td>
<td>13.73 ± 0.15</td>
<td>97.5</td>
</tr>
<tr>
<td>OFL</td>
<td>ND</td>
<td>47.62 ± 1.00</td>
<td>98.1</td>
<td>ND</td>
<td>44.13 ± 1.07</td>
<td>98.0</td>
<td>ND</td>
<td>34.27 ± 0.69</td>
<td>97.3</td>
</tr>
<tr>
<td>NOR</td>
<td>ND</td>
<td>10.01 ± 0.67</td>
<td>93.8</td>
<td>ND</td>
<td>6.83 ± 0.83</td>
<td>9.1</td>
<td>ND</td>
<td>10.12 ± 0.73</td>
<td>102.2</td>
</tr>
<tr>
<td>CIP</td>
<td>ND</td>
<td>21.60 ± 0.41</td>
<td>96.1</td>
<td>ND</td>
<td>7.41 ± 0.64</td>
<td>18.2</td>
<td>ND</td>
<td>24.86 ± 0.59</td>
<td>96.8</td>
</tr>
<tr>
<td>ENR</td>
<td>ND</td>
<td>53.58 ± 0.66</td>
<td>100.9</td>
<td>ND</td>
<td>9.84 ± 0.73</td>
<td>45.5</td>
<td>ND</td>
<td>53.05 ± 1.23</td>
<td>96.7</td>
</tr>
</tbody>
</table>

Note: (1) ND and RR represent non-detectable level and relative recovery, respectively; (2) μg L$^{-1}$ was converted to μg kg$^{-1}$ on the basis of the following matrix densities: 1.03 g mL$^{-1}$ for milk; 1.11 g mL$^{-1}$ for egg; and 1.42 g mL$^{-1}$ for honey, respectively.
Table 4. The sample preparation time for PS-MSLM is much shorter (≈8.5 min) than those of MSP (2 days), DSPE (91.5 min), LLE (16 min) and PLE (21 min and 15 min), as shown in Supplementary Table 4. The LODs for PS-MSLM-HPLC-FLD were in the range of 0.07–0.53 μg kg⁻¹, which were comparable with those of MSP, and lower than those of LLE, PLE, DSPE and SPE. The RRs for PS-MSLM (91.9–105.0%) were much higher than other referenced methods (ca. 80–90%), with the exception of LLE (28–129%), PLE (69–107%) and MSPE (84.0–106%). Additionally, the PS-MSLM method gave higher precision with RRs very close to 100%. The higher precision could be explained by low repartitioning of extractant into the aqueous solution during collection as a result of complete separation of extractant from the aqueous solution prior to collection.

4. Conclusion

This study developed a new and simple integrated apparatus for extraction and quantification of five FQs in animal-based foods. The novel integrated apparatus consisted of three simple HDPE parts that were used to separate the solvent from the aqueous solution prior to retrieving the extractant. This technique reduces repartitioning of extractant into the aqueous phase during collection, decreases organic phase-collection time and improves extraction efficiency. As compared with other methodologies, the PS-MSLM method developed and optimized in this study has several advantages, such as high extraction efficiency, easily constructed with inexpensive HDPE materials, laboratory accessibility, short extraction time and compatible for subsequent HPLC analysis. It was successfully applied to determine five FQs with high RRs (91.9–105.0%) and low LODs (0.07–0.53 μg kg⁻¹) in milk, egg and honey samples. As a result, the PS-MSLM method developed and optimized in this study has excellent prospects for sample pretreatment and quantification of trace levels of FQs in animal-based foods.

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (21377100 and 31270548) and the Zhejiang Provincial Natural Science Foundation (LY13B070011 and LY13D010006). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.foodchem.2014.11.132.

References

