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Robust Optimal Control of a Natural 
Gas-Fired Burner for the Control 
of Oxides of Nitrogen(NOx) 
DAVID ST. JOHN and SCOTT SAMUELSEN 

UC/ Combustion Laboratory, University of California, Irvine. CA 92717 

(Received 13 February 1997; In final form 9 May 1997) 

Tightening requirements on indus1rial boilers and furnaces will require hands-rree techniques to 
(I) assure peak performance with respect to emission, and (2) assure an ability to achieve peak 
performance throughout a load duty cycle. In the present paper, robust optimal control of a model 
industrial, swirl-stabilized, natural gas-tired burner is explored as a strategy to attain and 
main1ain low flue-gas nitrogen oxide concentration ([NOx]l concomitant with high combustion 
efficiency (I/,). A performance index, J, is defined such that the maximization of J correlates to 
optimal burner performance, with respect to (NOxJ and 'le- Two parameters, swirl intensity (S') 
and excess air(C:A), are made amenable to control and incorporated as variable burner inputs. For 
a given load, the settings of EA and S' arc automatically adjusted by a specialized search algorithm 
in order 10 maximize the performance index, thereby optimizing 'I, and (NO,). The robustness of 
the approach is demonstrated and evaluated by initiating a change in load and observing the 
reaction of the modified control system. The control scheme is shown 10 effectively increase and 
maintain overall burner performance. Implementation of robusl optimal control to practical 
systems is discussed in terms of chullengesoutstandingand opportunities to integrate with overall 
system performance. 

Keywords: Combust control; combus1ion in practical systems (furnaces; incinerators); environ
mental combustion (NO,) 

INTRODUCTION 

While combustion of fossil fuels provides most of the world's energy, it also 
produces most of the world's air pollution. One straightforward technique to 
reduce these emissions from stationary combustion systems is to switch the 
fuel being burned, substituting a cleaner-burning fuel where a more poll uting 
type is being used (i.e., switching from coal to oil or from oil to natural gas). 
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Although natural gas combustion generates significantly lower emissions of 
sulfur oxides and soot than coal or oil, reducing the emission of oxides of 

nitrogen (NO and N0 2, collectively referred to as NOx), a major contributor 
to photochemical oxidant ("smog"), remains a challenge. 

Many techniques are employed in the task of controlling NOx emissions 
from stationary combustion applications. Some controls seek to prevent NO x 

formation during combustion, such as staged combustion, flue gas recircula
tion, catalytic combustion, etc. Other control processes destroy NOx in a 
post-combustion reaction; these include selective catalytic reduction (SCR), 
selective non-catalytic reduction (SNCR), and non-selective catalytic reduc

tion (NSCR) (U.S.E.P.A., 1992). 
In any of these processes, a set of static input parameters (fuel load, 

equivalence ratio, etc.) will correspond to particular values for each of a set of 
output parameters (NOx emission, heat loading, combustion efficiency, etc.). 
For a given combustion process there will be at least one set of input 
parameters that produces an optimum set of output parameters. Identifying the 
input parameters that produce this optimum condition is not trivial. Further
more, these optimum input parameters will change as boundary conditions 
vary due to changes in load, fuel type, inlet air properties, or even subtle 
changes due to equipment degradation. 

Using a natural gas-fired, I 00,000 Btu/hr, model industrial burner, research 
at the University of California, r rvine, has shown that certain values of swirl 
intensity and excess air (equivalence ratio) can significantly reduce the NOx 
concentration in the exhaust gases without reducing combustion efficiency 
(St. John and Samuelsen, 1994). 

Previous research in the a rea of combustion control has dealt with the 
problem of reducing pressure oscillation (McManus et al. , 1993). The present 
work explores the potential of applying a robust, on-line, active optimization 
scheme to a combustion process for the control of the emission of nitrogen 
oxides, over a range of conditions. A specialized optimization algorithm, static 

by operation, is applied to control the fuel-air mixing process via swirl 
intensity and excess air in order to optimize burner performance, which is 
defined in terms of combustion efficiency and NO" concentration, measured in 
the exhaust gas. 

An active control scheme has been postulated in order to continuously 
monitor NOx concentration ([NO,.]) and combustion efficiency (I'/,). and 
adjust the fuel-air mixing process to maintain optimum performance of the 
burner as boundary conditions vary. Given a constant burner geometry, and a 
set of variable input parameters (in this case swirl intensity, S', and excess air, 
EA), the active control system should be able to find some combination of 
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those parameters such that a desired performance, the optimum condition, is 
attained and maintained. 

APPROACH 

The approach adopted implements the active control hypothesis in fo ur seeps: 
(I) development of the experiment; (2) definition of performance in quantita
tive terms; (3) achievement of a "proof-of-concept" phase demonstrating the 
viability of the active control scheme; and (4) exploration of a more advanced 
control algorithm and of the control scheme's reaction to a large scale change 
in boundary conditions (in this case, fuel load). 

Experiment 

T he burner facili ty and associated control hardware are shown schematically 
in Figure 1. Given a fixed fuel flow (load), the two inlet parameters (EA and S') 
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are varied by adjusting the amount of air flowing through the axial and 
swirl air streams. First, the sum of the two air streams (m~ + m0) determines the 
overall excess air (EA) provided for combustion. Second, the percentage of 
flow through the swirl air stream with respect to the total amount of air flow 
uniquely defines the swirl intensity (S') for this burner. · 

To facilitate computer control of the air and fuel flow, sensor/valve 
packages were installed in the fuel line, the axial air line, and the swirl air line. 
Each sensor and valve is referred to collectively as a mass flow controller 
(MFC). 

Figure 2 is a block diagram representing the general control scheme em
ployed in this study. The burner is the plant, or object under control. The 
sensor is composed of a bank of gas analyzers, similar to continuous emissions 
monitoring systems installed in many industrialjcommercial burner oper
ations today. A continuous sample is extraced and pulled through five 
analyzers which measure [CO], [C02], [HC], [02] and [NOxl 

The controller consists of a 486-based computer which reads emissions 
signals from the analyzers and calculates NO x concentration (corrected to 3 % 
0 2), and combustion efficiency. Using a specialized optimization algorithm, 
the controller determines new values of S' and E_A, and sets the air How 
accordingly. 

Performance Definition 

For a given burner, optimum performance can be qualitatively defined as the 
value of swirl intensity, S', and excess air, EA, where [NO~] is rela tively low 
and combustion efficiency remains relatively high. In order to make an 
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FIGURE 2 General control scheme. 
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objective evaluation, performance is quantified by a weighted sum called a 
performance index, which is denoted as .I. This performance index is a function 
of [NO,.] and l'/c· The performance index is defined such that an increase in 
combustion efficiency and a decrease in NO, concentration both lead lo an 
increase in J. That is, performance of the burner is considered optimized when 
J is maximized. The performance index, J , can be defined in terms of any 
measurable parameters of interest. For the purposes of active control demon
stration, the performance index is defined as 

J = g(l'/c) +/([NO,,]) (1) 

rl -0.75 · ([N0,.]3%)4 

;[NO.x]3y, ~ [NO.xJ1;m;1 
(NOxJJimit 

/([NO.x])=l 

(1 -0.75)· [NO.xJmax = [N0,]3y, [NO] [NO] 
[No ] [ 0 ] ; x 3 % > JC limit 

x mu N x limit 

(2) 

g(l'/c) = '\ ~c.min ( 
- )1/2 

100 Yo l'/c.min 
(3) 

where [NO"Jm .. and "le.min are set according to the ranges expected for a 
particular burner geometry. The definition of the effici_ency function term is 
such that an increasing reward (i.e., an increase in J) is applied as combustion 
efficiency increases. The purpose of the piece-wise definition of/([NO,..]) is to 
impose a high penalty on J above (NOxJiimii and a rapidly decreasing penalty 
(increasing reward) for measurements below this limit. In other words, the 
contribution from f([NOxJ) to J is high as long as the measured NO,.. 
concentration is below the specified limit. The value of [NOJ1imil can have 
practical significance, such as the permitted NO x emission limit for a particu
lar burner application. Hence, a burner with perfect performance would yield 
a va,ue of J equal to 1.0 (l'/c = 100%, [NO"]= 0 ppm). 

The intention of this performance index is to provide a single variable (a 
function of the two variables of interest) that may be evaluated and searched in 
real-time by a computer, using specialized optimization techniques. The way 
in which the performance index is defined is specific lo the particular burner 
configuration, and its emission character, under study. It should not, in 
the form presented above, be used as a universal parameter for comparing 
the performance of different burners, but it may be useful in comparing the 
performance of different configurations of the same burner. 
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This performance index, applied to [NOxJ and' '1c measurements taken 
across the stability limits of one particular nozzle configuration at 100% load, 
is plotted in Figure 3. The region of optimum performance (maximum J) is 
indicated by the white band in Figure 3. · 

Proof-of-Concept 

As a demonsrrarion of the viability of the active control approach, a relatively 
simple problem was considered: Optimize the performance of the burner for a 
given geomet ry, a t a static load (100%), using a relatively simple and well
understood search algorithm. T hat is, determine if the active control system 
can find the optimum of the surface shown in Figure 3, without having 
knowledge of the shape of that surface, other than the location of the stability 
limits. The burner geometry incorporates a nozzle that injects the fuel in the 
same sense as the flow of the swirling air (co-swirl). This problem was 
presented in a previous work (St. John and Samuelsen, 1994) and is 

summarized here for completeness. 
The optimization technique employed in this demonstration is known as a 

direction-set technique. Any technique which works from an initial point in a 
given search space and then optimizes along each of a set of directions within 

Perf. Index, J 
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0.41 0.44 0.47 0.5 0.53 0.56 0.59 0.62 

Swirl Intensity, S' 

FIGURE 3 Performance Index, J, as a function of EA and S'. White region indicates area of 
best performance. 
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that space can be classified as a direction-set technique. What distinguishes 
individual techniques within this classification is the process by which those 
directions are chosen. 

The method of steepest descent is one popular direction-set technique. This 
method is considered a first order technique because it involves calculating or 
measuring the local gradient and then optimizing along the line in the direction 
of steepest descent (or ascent). Upon optimization in one direction, the gradient 
is again determined and optimization proceeds in the new direction. Although 
powerful, the time-consuming process of measuring the gradient at each turning 
point prevented exploration of this method in the current research. 

The direction-set technique used in the proof-of-concept stage is known as 
Powell's method, a zero order technique, because it does not require calcula
tion of a gradient. The approach and results of the proof-of-concept demon
stration are included in the Appendix. 

Following success of this initial demonstration, more practical studies were 
undertaken. First, a more advanced optimization method, known as the 
genetic algorithm, was incorporated and applied to the same problem, and 
same burner geometry, addressed in the proof-of-concept. The results from 
this study appear in a previous work (St. John and Samuelsen, 1994) and are 
presented here in the Appendix. 

Genetic algorithms represent a radical departure from traditional forms of 
optimization, such as the direction-set class of search methods. Based on 
natural selection mechanics, the description of this method requires language 
borrowed from that field of study. The process starts with a population of 
individuals. The fit11ess of each individual is evaluated and individuals are 
selected for reproduction according to each one's fitness: individuals with 
higher fitness have a better chance of reproduction. Each individual selected 
for reproduction can be represented by a character string and functions as a 
chromosome. Each chromosome may undergo crossover with its mate based on 
a finite probability that crossover will occur. In addition, each allele-repre
sented by a single character in an individual's chromosome (string) - has a 
small probability of mutating (Goldberg, 1989). 

In the present context, a population of individuals is comprised of twelve 
discrete points in EA and S' search space, either randomly or uniformly 
distributed, initially. An individual's fitness is that individual's scaled perform· 
ance index value. Individuals are presented as chromosomes, undergoing 
crossover and mutation, by coding each point as a ten bit unsigned integer 
string (ten ones or zeros). 

The next step involves application of both search techniques to a single 
burner geometry, incorporating a step change in load into the experiment, so 
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tha t the control system's response to such a change may be evaluated. A 
second burner geometry was used in this study due to the observation of a 
more pronounced change in the location of the peak region following a change 
in load. The geometry of the second burner differs from previous work only in 
the fuel nozzle; the second nozzle injects fuel against the flow of the swirling air 
(and is referred to as the counter-swirl nozzle). 

A change in load is incorporated into the control trials simply by starting at 
one load and a llowing the system to reach an optimum at that load, then 
returning the operation of the burner to it's initial operating point, initiating a 
change in load, and a llowing the controller to relocate the new region of 
optimum performance. 

RESULTS 

Results are submitted in several graphical forms, which merit discussion. First 
of all is the most basic presentation, absolute performance index value versus 
iteration. This type of graph is sjmply a line-plot of performance index 
evaluations as a function of sequential algorithm iterations. Graphs of this 
type are generated for both the direction-set and the genetic algorithm 
techniques. They answer the fundamental question for a particular run: Over 
time, was performance of the buner improved? These graphs are individually 
helpful in addressing the ideas of efficacy, or whether or not the control system 
completed its objective. Two or more of these graphs can be helpful in 
comparing the efficiency of one technique to another: Did one technique reach 
a high performance condition sooner than another? This type of graph is 
referred to as an absolute performance history curve. 

Another graph type is similar to the first but displays a running average 
performance rather than an instantaneous performance, versus iteration. This 
gives an indication of the burner's overall performance for a particular run, 
and can be used to compare the efficiency of competing optimization tech
niques. This type of graph is called an average performance history c~rve. 

The third type of result pcrscnted here is also useful in evaluating the efficacy 
of a particular direction-set trial. T his graph is a contour plot of the perform
ance map, overlaid by the path that a particular direction-set trial run 
produced. It shows where operation of the burner started, and if the region of 
measured high performance was indeed a ttained by the direction-set tech
nique. This plot type is known as a direction hisLOry graph. 

The fourth graph type is similar to the direction history graph but is used for 
display o~ the genetic algorithm results. One plot of the performance map is 
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produced for each generation. with the location of each 111dl\ 1dual in :1 
particular generation denoted by a data marker. This shows whether or not, 
O\'er time, the lncattons of the in<li\it.luals converged tt) the region nf high 
performance. It also shows. over se,cral generations. how less-fit indi,·iduals 
are less like!) to be selected for repwduction than more-fit creatures. This final 
graph ·ypc is referred to a::; a pop11lati1111 hfawry graph 

Results from the proof-of-concept phase.< nd the m1tial exploration l>f the 
geneuc algorithm, arc included in the \ppc11di\, and sho"" he ability of tlw 
genetic algorithm to find the optimum region of a search sp<tce Ill a practical 
com buslilrn application. The true test of the <1cti,·e control system. however. is 
the question of ro'.lustness: Can the system n:spond to a largt•-scalc change in 
boundary condittllns. such as a change in th\! fuel now rate·~ 

The absolute and a\craged performance hi·aory for a representative trial 
using the direction-set method is p1·cscnte<l in Figure 4. The shaJmg changC' 
in the plot corresponds to the change in load from 100% to 70°·0 dming. thC' 
trial. This phH -.hows that. as in the case of tho; single load. performance of thC' 
b.1rncr ss increased over time. Following tlw load change. the search hegins 
ancv .. and pcrfcYtmmce of the burner is again improved Note that the 
aholutc: diITercncc between th~ value of the pcrfomrnnce index al the starl 
and near I he end is not as great as 11 was tn the proof-of-concept result~ 
(rig. A2). This difference anses from the fact that the per ormancc of the 
"ccond geometry (counter-~mirll is better tWerall than that of the first 
geometry (co-swirl). There 1s not us much difference between a low pcrform
<rncc con<lition and a high perlormance condition for the bdter performing 
burner ge,1111ctry. This ditierencc in scale is also the reason why large 
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excursions arc e' pl.!ricnccd (note. the line is not a~ llat as it is in Fig . .\2) after a 

i)l.!ak in perfornuncc ts reached. 
Figures "'a and Sh are the din.'<.:tion history plots for this particular run at 

100% and 70% load. respecti\cly. In hoth cases. search begins in the 15J 
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direction. reflects off or a stabilit) limit. and proceeds to another edge of 
stabilny. These plots arc vcr} telling. fM in blllh case~ 1hc global optimum 
Clm<lilJOll$ is nut reached. The system essentially get-; hung up on a local peak. 
llr can not find the din.:ction in which lo continue searching (which would be 
exactly along the stability limit linr:J. This <kmonstratcs two Wr) 1mportan 
weaknesses in lhc dircction--;ct technique: First. if the com roller reaches a local 
peak. 11 wi I remain there; second. if a path of 2.sccnt exists fror1 a po111t. but 1t 1s 

namm. the algorithm may lake a long time finding that path. 
The pe1forma111.:c history results Cab~olutc and a\crage) for a typical genetic 

algorithm search with a change in load arc shown in Figure 6. Note tile Jagged 
nature, which is typica I of the gcm:tic algorithm's clrnractcr. Tl\ dillicull tll tell 
much from this plot. o ther than performance of the burner has h!.!en imprnYed 
O\'cr time. and this improvement is repeated following a change 111 load. 

Figures 7a and 7b are the population histories for th1s same trial for 100% 
and ?on,~. load. respectively. Some very inten~sting obserrnt10ns can be made 
fnim these figures. J- irst of all. J· igurc 7a shc.ll\s thl.! familiar genetic algorithm 
bcha\'ior: :-tarting from a random d1stnbutic•n of twelve indi\'iduals. more-li t 
individual" propagate and less-lit mdi\ 1duals die off. H) the fi'th generation. i11 
fact. all but three individuals arc clustered about the rcgi1lll or the global 
optimum. where performance is at its peak for I his burner. The outlyin!! 
ind1\ 1duals are <lue to the mutatwn effect. 

Looking now at Figure 7b. the load has changed (along with the stability 
limits) and the sixth generation is re-initialized in a random distribuuon . The 
sun ival of the fittest behavior of the gen1:tic alg<irithm can be follll\\'Cd 

0.90 

...., 
...( 0.80 
'IJ 
"j 

.s 
Q) 
v 0.70 c 

"' i:: c: 
.0 
"t:: 0.60 ., 
0.. 

0.50 
0 10 40 60 80 100 120 

indi\'idual 

~ IGLIRfU1 ,\IN•lu1..: ('olidl and al'.:rag..: (d:ishcd) p..:rrurm.1nc.: hbwr~ . genetic alg1•rithn1 
Shading ,h1f1 111d1~-Jle'> 1hc change 111 fucl lo<id fr<lrn 100~. tc> 70°·,,, 



I~ 

060 

t:'.i 020 
..; 

::( 0 IS 

E w 010 

0.05 

0.l~ 

0.20 

015 

UIO 

025 

0.20 

() ·~ 
II IO 

005 

D.~I JOll"-l ,\;\() S. S,\:\IUI LSE1' 

0.70 0.1>0 090 

0.70 

000 ....__ ....... _ 

0.60 070 0.80 0.90 

oi;u 01/0 

025 

020 

015 

0 .10 

0.05 

000 

1125 

0.20 

() 15 

0 IO 

005 

flUO 

l·l(il, RI 7a Typ11; 11 popul.111n11 hi,tory plo1, IQ()"'• hid White 11umcr.1h denote g,·ncruuon, 
i;ra} 1111111crals 111d11:a11: d1i-t.:nng. 

through the genl'ralions again. and hy the 1enth generation. all of the indi\ i
duals arc crowded ahout the region of peak performance. 

For a more in-depth c,nnparhon of the t\\ o techniques. 1cfer to the results 
summari1cd in the Appendix. 

SUMMARY 

The goal of de\ eloping an acti\c l'Ontrol approach that will :main operation of 
a hurncr at tb l1ptimum pcrft)mrnncc. and that will maintain peak operation 
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following a change in houndary <.:1.luditions. has been reali/cJ. The approach 
presented 11crcin has been shm\ n to adjust hurncr in kl parameters in order lo 

optimi/e 1\0, emission-. and combustion eflkicnc) . Thi-. \\,ls accomplished by 
dcfinmg a trade-off between c0mhustinn el'liciency and "i()_ concentration in 
the form of a performance index. The performance 111dc\ functions as a single 
search criterion. to \\ hich two search techniques were applied in the current 

'' ork. 
Further. the simple genetic algorithm ha-. hcen shown 10 he a supcri~>r 

search technique, in the case or continuous combustion l1pt11nil'.atillll. as 
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compared to a zero-order direction-set method. The main advantage of the 
genetic algorithm seems to be its ability to locate a global optimum more 
reliably than a direction-set technique, without the tendency to settle on a 
local ridge. 

While these results are encouraging, care must be taken in applying them 

to the general problem of practical burner optimization. Certainly, each 
burner application will have peculiar characteristics that must be accounted 
for in the development of a control scheme. This research does not indicate 
that either the direction-set or the genetic algorithm search technique can be 
applied to the practical control of a burner. Rather, this study should be seen 
as a first step, providing guidance to future research into the development of 

a practical application of active control. The achievement of such a goal will 
benefit from a refined search mechanism, and an improved emissions and 
stability sensor. 

The system developed in the present work continuously searches for the 
optimum operating condition of a burner, and successfully achieves optimum 
performance even following a change in load. While the present system 

optimizes emissions, it does so without any knowledge of that burner's 
particular emissions character. The only requirement, in the present case, is 
knowledge oft he stability limits. The successful be ha vi or of the control scheme 
following a large-scale change in boundary conditions (fuel load) implies that 
the system would respond to smaller-scale changes in boundary conditions as 
well (fuel composition, equipment degradation, etc.). 
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APPENDIX: POWELL'S METHOD IN 2 DIMENSIONS 

Powell's direction-set technique was first proposed as a method for minimiz
ing a mathematical function (Powell, 1964). To explain Powell's method in two 
dimensions, first consider an objective function, F, which is a function of two 
variables, X 1 and X 2 , represented by the vector, X. Now consider a search 
direction, represented by the normalized vector, S. Thus, the direction along 
the X 1 coordinate would represented by S=(l,O), and a search in the 
direction 45° to the X 1 and X 2 directions would result if S = (I, I). Given an 
initial position, X;, and an initial search direction, S;, a new position, X1+ 1 is 
found by maximizing (or minimizing) the objective function along the line 
defined by the search direction. Computationally, optimization is accom
plished in an iterative fashion by finding the (scalar) value of a1 that produces a 
value of X; + t> which maximizes the objective function, F, according to 

This is, in fact, the general optimizing strategy for all direction-set methods. 
The direction-set method chosen for this research is a zero order technique, 
because it requires evaluation of the objective funct ion (performance index) 
only. This method is a modified version of a powerful, popular, and well
understood technique known as Powell's method. Figure A I is a flowchart 
describing the modified version of Powell's method employed in this study. 

In discussions about search processes of this modified type, some clarifica
tion should be made regarding numbering convention. A position in the 
search space is still denoted by the vector, X = (X 1, X 2) , where X 1 = S' and 
X 2 =EA. In the modified approach, each position in the search space has two 
numbers associated with it, Xij. The first index, i, corresponds to the search 
iteration, just as in the discussion of Powell's method. For the initia l position, 
i = 0. After maximization along the initial direction, a0 , the new value of i is 1. 
And so on. The second index,}, refers to steps within a search direction. Hence, 
the first position is denoted X0 •0 , and the first evaluation of performance is 
J o.o· Following the first step alonga0, the} index is incremented by one, but the 
i index does not change until the search direction changes. So, if it takes ten 
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decrease (or a stability limit 1s encountered) thr<:e times. Thus, along. a 
unimodal linl.' this search will generate a \':llU<· of X that rl.'sults 111 a maximum 
'alue 1lf J along that line. 

This 11.~hnique has the undesirable clwractcristic of settling. on the first peak 
cncnuntcrcd. Howe,·er, the hill climbing technique is employed because 
c\aminatil"1 of the character of the J surface reveal-; an essential!) unimotl•tl 
surface with rcsrect to swirl intcn,,ity and excess air Hill dimbing on a 
u1111nodal surface ensures that the first maximum encountered ;dong any line 
is the globnl maximum on that line. 

PROOF-OF-CONCEPT RESULTS 

hgurc t\2 i' an ab.;olute performance history phlt from a typical direction-set 
trial of the burner at 100'1!,, l1)ad. for the first geomctr) c\plorcd (C<l-swirl 
1w11lc1. Note that the rerfonnance index starts (1ff at a rclathcly Im' rnluc. 
111crca-;c~ .;harp!) after about the ninth itcrati1lll, and :-.cttlc~ out to ''hat is 
Cy,c1111ally the peak value after abom liftccn i1erati<llls. 

The direction history for lhe same trial displayed in Figurt~ A2 ~own in 
hgurc AJ. Keep in mind thal the control prngram ha~ no knowledge of the 
shape <'f the performance map {conlnurs) during its operation': the map 1s 
,:;hown for refcn:ni;e only Operation of the burner starts nlT in a n:g1on of 
rclat1\ ely low performance. I nitiali.1cd along a dmxtton of JJJ . the search 
rrocecd.; umil a constrauu 1s encountered (1cro percent excess air. in Lh1s 
case). al which point the system changes dirccLion and hunts along a rath 
that is 90 to the fir.;t direction. Search along this second dm.:ct1on takes the 
opcraLion of the hurncr up to the region of peak performance. \\here performance 

....., 
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() 65 .s ., 

.... 0.55 c: 

E 045 .g 
0.35 d! 
0.25 
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I IGL!IH: \2 fypi.::11 aholmc performance h Sh•!), <lir,·c1ion.<;c1 technique 
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i-; essentially optimzcd Search conltnucs. however. in difleren1 directions, until 
a slight increase 1s cncounrcred The tnal was halted after 83 itcrauons. 

Figure ·\4 1s the average performance history curve lor this same trial. 
indicating average performance of the burner up to a given point 

l-1gurc A5 shows both the absrilutc and the J\'Cragc performance h1s1orics or 
a typical application of the genetic algorithm. Nole lhe relativd) erratic tm:c 
oflhc absolute pl'rformance mdex as compared to Figure A2. This is due to lbc 
genetic algorithm's cvalu:uion d an entire population al once. The genetic 
~lgonthm is not concerned with the order in \\.hich evaluations .ue made. Jt 
functions. rather. from the whole popula11on at once. taking all pe""formance 
\'alucs in parallel and generating a new population hased on the relative 
pcrfom1ance of 111C previous population. I Jenee. the separalton of the genetic 
algorithm's performance histor) curve into sections 1s demarcated by \·ertical 
lines in the figure. All hough probably of concern 1n a practical sense. the jagged 
nature of the absolute pcrfom1ancc line is not impnrtalll to the func•ion llf the 
genetic algorithm. \\hat 1s important 1s the average performance. after each 
entire populatton This average performance 1s shown to increase steadily. 

I-' 1gurc A6 is the population h1:aory for this same run. This figure is perhaps 
more illustrati\·e than Figure A5. The first generation is cssenually unifon'l 
<icross the search space. In the sccon<l generation. it is clear that some less-fit 
indh iduals ha\'c die<l off. By the third generation. there is a dear migra110·1 
toward the reg.ion of peak performance and in the fourth generation all bu1 
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three of lhe twelve individuals have converged to the sume area of high 
performance. 

The three outliers CHn be attrabuled to tw0 sources. One or lhc rogues, at 
EA= 17°/o and S' = 0.44. is simpl) u stubbt)rn mdtrn.lual. rhis parltcular 
point has been carried through all the Wa} from the initial generation. with 
little varianon. The reason thi!> indi\ldual persists rs becauc;e each in<lrvrdual. 
even a poorly fit one, has a finite prnbabilit) of being reproduced il simply 
got lucky. Ifs likely that it \\oukl die offrn subsequent generations, although ii 
is finitely rossihlc thal it would nc\"er dre off The other two outlier" were 
produ1.:c<l by a sepllrate mechanism: mutation Rccall 1hat after a populauon's 
fil'.1ess has been C\ialuatcd. individuals arc selected for reproduction. then they 
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are potentially crossed-over wilh their mates. and ea{·h hit al011g an indi' i
dual's coded binary string is subjected to potential mutation. These tv. o 
individuals arc the product of I his process. 

Thus, the genetic algorithm has hecn successful in demonstrating the 
fundamental rec uirement of an active contrnl system as \\.ell: performance llf 
!he burner. under a stat11.: fuel load and burner geometry. has been steadily 
increased lwer t me. 

Figure,\ 7 is a plot of both a vcragc performance of the direction-set and 1 he 

genetic algorithm cases. Note that even after 48 iteration'\ the average per
fom1ance of the direction-set method has lllll surpassed and the overall 
performance of the genetic algorithm. 

The behavio1 of the two t} pica) trials discussed so far deserve some 
"'what-if'' discussion From other allcmpls, the results of whil'h arc not 
presented herc.1t 1s clear that the genetic algorithm will perform essentially the 
same as in thb typical case: erratic start, converging after a few generations. 
but almost always wJth a fe,, outliers. The direction-set technique. however. 
could perform quite differently. It should be obvious that this method depends 
heavily on two initial parameters: the starting location and the starting scan:h 
Jirection. One can imagine the lrinal search that starts in the peak region. 
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In this cas.:. the goal is achieved by default. e1ltaining and maintaining peak 
operations wilholll any search. Or. consider starting a search in a ""poor" 
performing region. but initializin!! the search d1rcction headed exactly for the 
region of peak performance. For this scenario. peak performance would be 
achieved much earlier than in the re~;ults pre~;ented. 

So, the apparent dominance of the genetic algorithm must be tempered with 
the stalcmcnt that there arc circumstances \\.here the direction-set could 
pc.:rform more cfficielllly than the genetic nlgornhm. but that bcha\ iour is not 
guaranteed The genetic algorithm. on the other hand.\\ ill provide relative!) 
consistent behavior. and has the added feat urc of locating the global optimum. 
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FIGURE A I Powc:lrs method in two dimensions. 

steps along the initial search direction to maximize J, then the final position is 
denoted X0 . 10, and the final evaluation of J is J o.io· T he fina l position along a 
search direction becomes the initial position in the next search direction. For 
example, X1.o is given the value of X0 . 10, J 1.o is evaluated and the search 
continues in the next direction, a 1• 

In Figure A I, ··maximizing J along the direction a;" can be accomplished 
through a variety of methods, including polynomial approximation or the 
golden section method (if the minimum is bracketed). For practical reasons, 

the method of line maximization used in this study is a simple hill climbing 
technique. Starting at a given Xi.O• the settings of EA and S' are stepped along 
the d irection, !X;. Search proceeds in finite steps as long as the value of J 
continues to increase. If the performance index value decreases, or if a stability 
limit is encountered, the search direction is reversed. A new direction is 
determined and a new search initiated only after the value of J is found to 




