Lawrence Berkeley National Laboratory
Recent Work

Title
Transcriptional Gene Expression Analysis of the Response to Acetone in Desulfovibrio vulgaris Using Whole-Genome Oligonucleotide Microarrays

Permalink
https://escholarship.org/uc/item/04h6z2fz

Authors
He, Qiang
He, Zhili
Wu, Liyou
et al.

Publication Date
2004-12-14
Transcriptional Gene Expression Analysis of the Response to Acetone in *Desulfovibrio vulgaris* Using Whole-Genome Oligonucleotide Microarrays

Qiang He¹, Zhili He¹, Liyou Wu¹, Adam P. Arkin², Terry C. Hazen², Judy D. Wall³, Matthew W. Fields⁴, David A. Stahl⁵, and Jizhong Zhou¹

¹Oak Ridge National Laboratory, Oak Ridge, TN
²Lawrence Berkeley National Laboratory, Berkeley, CA
³University of Missouri, Columbia, MO
⁴Miami University, Oxford, OH
⁵University of Washington, Seattle, WA

*Desulfovibrio vulgaris* has been studied extensively for its potential in the bioremediation of heavy metals and radionuclides. Hydrocarbons and solvents, as frequent environmental co-contaminants, have been reported to inhibit microbial activities and thereby posing a limitation on potential remediation efficiency. As a part of the Genomes to Life project to deduce the stress response pathways in metal/radionuclide reducing bacteria, we studied the responses of *D. vulgaris* to the presence of acetone, which belongs to the class of ketone solvents frequently found in contaminated DOE sites. Growth experiments indicated that *D. vulgaris* could maintain normal growth with 3%(v/v) acetone following a 1-h lag phase. With the presence of 5%(v/v) acetone, we observed a 2-h lag phase followed by a slower growth rate which was only 15% of the normal growth rate. At acetone concentration of 8%(v/v), no active growth was observed following 10 hours of incubation.

To assess the mechanism of solvent inhibition, genome-wide transcriptional profiles were studied on *D. vulgaris* cultures following 30-min acetone (5% v/v) treatment using whole-genome microarrays. Acetone shock (30 min) altered the expression of a large number of genes in the *D. vulgaris* genome, of which 309 were up-regulated by over 2 fold and 199 were down-regulated by over 2 fold. Transcripts highly up-regulated included genes encoding the flagella structural subunits, *flgB* (15 fold), *fliE* (11 fold), and *flgH* (10 fold). Chaperones comprised another group of genes highly induced in the presence of acetone, which included *dnaJ* (11 fold), *groES* (8 fold), and *hsp20* (8 fold). Down-regulated genes included two groups of genes, ribosomal proteins and amino acid transporters, suggesting a state of growth arrest upon acetone addition. These results suggested that *D. vulgaris* responds to elevated solvent levels by increased motility and maintenance of proper protein functions. Current work is focused on the analysis of regulatory pathways based on temporal transcriptional dynamics.