Title
Bendable Focusing X-Ray Optics for the ALS and the LCLS/FEL: Design, Metrology, and Performance

Permalink
https://escholarship.org/uc/item/04z1d7k8

Author
Yashchuk, V. V.

Publication Date
2010-07-30
Bendable Focusing X-Ray Optics for the ALS and the LCLS/FEL: Design, Metrology, and Performance

V. V. Yashchuk,¹ S. Yuan,¹ S. Baker,² J. Bozek,³ R. Celestre,¹ M. Church,¹ K. A. Goldberg,⁴ M. Fernandez-Perea,² N. Kelez,¹,³ M. Kunz,¹ W. R. McKinney,¹ G. Morrison,¹ H. A. Padmore,¹ R. Souflı,² N. Tamura,¹ T. Warwick¹

¹Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
²Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94755, USA
³SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
⁴Center for X-Ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

We review the recent development of bendable x-ray optics used for focusing of beams of soft and hard x-rays at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory and at the Linac Coherent Light Source (LCLS) x-ray free electron laser (FEL) at the Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory. For simultaneous focusing in the tangential and sagittal directions, two elliptically cylindrical reflecting elements, a Kirkpatrick-Baez (KB) pair [1], are used. Because fabrication of elliptical surfaces is complicated, the cost of directly fabricated tangential elliptical cylinders is often prohibitive. Moreover, such optics cannot be easily readjusted for use in multiple, different experimental arrangements, e.g. at different focal distances. This is in contrast to flat optics that are simpler to manufacture and easier to measure by conventional interferometry. The tangential figure of a flat substrate is changed by placing torques (couples) at each end. Depending on the applied couples, one can tune the shape close to a desired tangential cylinder, ellipse or parabola. We review the nature of the bending, requirements and approaches to the mechanical design, describe original optical and at-wavelength techniques for optimal tuning of bendable optics and alignment on the beamline [2], and provide beamline performance of the bendable optics used for sub-micro and nano focusing of soft x-rays.

![Bendable KB mirrors used at the SLAC/FEL AMO beamline. Two mirrors with 400 mm long substrates are shown in a vacuum tank on the ALS Long Trace Profiler optical table to be characterized and adjusted to the elliptical shapes optimized for three different focus distances.](image)

Figure 1: Bendable KB mirrors used at the SLAC/FEL AMO beamline. Two mirrors with 400 mm long substrates are shown in a vacuum tank on the ALS Long Trace Profiler optical table to be characterized and adjusted to the elliptical shapes optimized for three different focus distances.

This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory and under Contract DE-AC52-07NA27344 at Lawrence Livermore National Laboratory. This work was performed in support of the AMO/LCLS project at SLAC.

* VVYashchuk@lbl.gov

References

Oral presentation X
Poster □