Title
ALPHA ACTIVITY OF Sm146 AS DETECTED WITH NUCLEAR EMULSIONS

Permalink
https://escholarship.org/uc/item/0517396v

Authors
Dunlavey, Dean C.
Seaborg, Glenn T.

Publication Date
1953-07-15
Radiation Laboratory

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA
Radiation Laboratory

Contract No. W-7405-eng-48

ALPHA ACTIVITY OF Sm146 AS DETECTED WITH NUCLEAR EMULSIONS

Dean C. Dunlavey and Glenn T. Seaborg

July 15, 1953

Berkeley, California
Alpha radioactivity in the rare earth region was first observed in natural samarium by Hevesy and Pahl. Further investigations of samarium proved the emitting isotope to be Sm147 with an alpha particle energy of 2.18 Mev. No other naturally occurring alpha radioactivity has yet been reported among the rare earths, but following the discovery of artificially produced rare earth alpha emitters on the neutron deficient side of stability, a comprehensive experimental survey and correlation of such rare earth nuclides has been made by Rasmussen, Thompson, and Ghiorso. This work showed that the alpha particle energies for isotopes of a given element increase with decreasing mass number, reaching a maximum in that isotope which decays to the stable configuration of 82 neutrons. The effect is analogous to that found in the heavy element region where the maximum alpha energy for a given element occurs in that isotope which decays to the stable configuration of 126 neutrons.

For the element samarium, the maximum alpha particle energy would be expected to occur in Sm146. This even-even isotope is presumed to be beta stable since it occurs between the even-even beta stable isotopes Sm144 and Sm148. Therefore, the absence of Sm146 (abundance <0.002 percent) from natural samarium has been believed due to its decay by alpha particle emission with a half-life of upper limit $\sim 10^8$ years.
A successful attempt to produce an amount of this isotope sufficient for investigation of its properties was made by intensely bombarding a target of purified neodymium metal of natural isotopic composition with 40 Mev helium ions in the internal beam of the 60-inch cyclotron. At a time several days after the bombardment, the samarium fraction was separated through the use of a column packed with Dowex-50 cation exchange resin and the use of ammonium lactate eluent. After the intensely radioactive 47-hour Sm153 had decayed, aliquots of the samarium fraction in dilute ammonium citrate solution of pH 8 were impregnated into Ilford C-2 and E-1 nuclear photographic emulsions for 72-hour exposure intervals.

Examination of the developed emulsions with a microscope revealed about ten alpha particle tracks of mean energy 2.55 ± 0.05 Mev. This alpha energy value, considered together with the properties of the known samarium isotopes, indicates that the emitting isotope is Sm146 formed by (α, n), (α, 2n), and (α, 3n) reactions. This energy for Sm146 agrees well with that predicted by Rasmussen, et al.

The beta activity of Sm153 (47 hr), formed by the (α, n) reaction, and the electron capture activity of Sm145 (410 day), formed by (α, n), (α, 2n), and (α, 3n) reactions, were observed quantitatively using a windowless proportional counter. An approximation of the total Sm146 produced was then made through yield comparisons by calculating the amounts of both Sm153 and Sm145 initially formed and estimating the ratio of the amount of Sm146 formed to each of these. Correlation with the observed rate of the 2.55 Mev alpha particle emission gives a half-life approximation of 5×10^7 years for Sm146.

This value agrees, within experimental error, with the theoretical half-life calculated using the formula of Preston8 and Kaplan.9 In this calculation, the value used for the nuclear radius of the rare earth region was that reported by Rasmussen, et al,5 which was obtained through substitution of the experimental alpha decay energy and half-life of the even-even nuclide Gd148 in the Preston and Kaplan formula. Thus 2.55 Mev corresponds to a half-life of 1.3 x 107 years while 2.50 Mev gives a half-life about a factor of four longer and 2.60 Mev corresponds to a half-life about four times shorter.

We are happy to acknowledge the cooperation of J. G. Hamilton, G. B. Rossi and the crew of the 60-inch cyclotron in the helium ion bombardment of the neodymium, the many helpful suggestions of J. O. Rasmussen and the assistance of W. E. Nervik in making the chemical separations. This work was performed under the auspices of the U. S. Atomic Energy Commission.

1 G. Hevesy and M. Pahl, Nature 130, 846 (1932)
2 Rasmussen, Reynolds, Thompson, and Ghiorso, Phys. Rev. 80, 475 (1950); B. Weaver, Phys. Rev. 80, 301 (1950); A. J. Dempster, Argonne National Laboratory Report ANL-4355 (1949)
3 W. P. Jesse and J. Sadanskis, Phys. Rev. 78, 1 (1950)
4 Thompson, Ghiorso, Rasmussen, and Seaborg, Phys. Rev. 76, 1406 (1949)
6 Perlman, Ghiorso, and Seaborg, Phys. Rev. 77, 26 (1950)
7 Inghram, Hess, Jr., and Hayden, Phys. Rev. 73, 180 (1948)
8 M. A. Preston, Phys. Rev. 71, 865 (1947)
9 I. Kaplan, Phys. Rev. 81, 962 (1951)