Lawrence Berkeley National Laboratory
Recent Work

Title
ELECTROSTATIC INTERACTIONS IN COMPLEX ELECTRON CONFIGURATIONS

Permalink
https://escholarship.org/uc/item/05q0q4dq

Author
Wybourne, B.G.

Publication Date
1962-08-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California
Contract No. W-7405-eng-48

ELECTROSTATIC INTERACTIONS
IN COMPLEX ELECTRON CONFIGURATIONS

B. G. Wybourne

August 1962
ELECTROSTATIC INTERACTIONS
IN COMPLEX ELECTRON CONFIGURATIONS

B. G. Wybourne
Lawrence Radiation Laboratory
University of California
Berkeley, California

August 1962

ABSTRACT

Simplified expressions for the matrix elements of electrostatic interactions both within and between several types of complex electron configurations have been obtained by the application of angular-momenta recoupling techniques. The use of these recoupling techniques avoids the usual extensive calculation of the sums of products of the matrix elements of tensors of the types $V^{\kappa k}$ and U^k. The derived expressions involve the sums of products of coefficients of fractional parentage and n-j symbols, and as such are amenable to machine computation.
ELECTROSTATIC INTERACTIONS
IN COMPLEX ELECTRON CONFIGURATIONS

B. G. Wybourne

Lawrence Radiation Laboratory
University of California
Berkeley, California

August 1962

INTRODUCTION

Studies of the complex spectra of rare-earth and actinide ions are complicated by the frequent requirement of a detailed knowledge of the complex structure of the electron configurations, and in some cases a knowledge of the electrostatic interactions between the configurations is necessary. The configurations of greatest interest are typified by \(f^n \), \(f^n l \), \(f^n l' l'' \), and \(f^n l'^2 \). The electrostatic matrices of all the \(f^n \) configurations are well known and will not be discussed. Of primary interest will be the interactions of the electrons outside the \(f^n \) core with those of the \(f^n \) core. The number of states occurring for these configurations is very large, and hence it is desirable to be able to compute the matrix elements on a high-speed computer. However, before calculations such as these are attempted, it is essential that the expressions for the matrix elements be put in as simple a form as is possible.

Racah and Arima et al. have given general procedures for calculating the matrix elements of "direct"- and "exchange"-type interactions between outer electrons and an equivalent electron core. Their treatment of exchange-type interactions requires the expanding of the exchange interactions into the sums of direct interactions. This approach--although equivalent, in its final results, to the method outlined in this paper--is complicated
by the appearance of sums of products of tensors of the types \(v^k \) and \(u^k \).

In seeking simplifications of their formulae and in making the formulae amenable to machine computation, it is desirable to avoid having to evaluate the matrix elements of several tensorial quantities prior to the actual evaluation of the electrostatic matrix elements. In the present formulation of the problem the need to evaluate the matrix elements of the double tensors \(v^k \) is overcome by suitably recoupling the angular momenta of the electrons involved in the electrostatic interactions. As a result the formulae may be expressed in a concise manner that displays clearly the properties of the angular momenta involved by the use of \(n-j \) symbols.\(^3\)

\[l^n \ l' \ l'' \ \text{CONFIGURATIONS} \]

It will be assumed that the two inequivalent electrons are coupled together and then coupled to the \(l^n \) core to form a total-orbital and a total-spin quantum number. For complete generality consider the matrix elements of the angular part of the electrostatic interaction between a configuration \(l^n \ l' \ l'' \) and a second configuration \(l^n \ l''' \ l'''. \) We may write, for the matrix elements of the electrostatic interactions of the inequivalent electrons with the \(l^n \) equivalent electron core,

\[
\left(\sum_{\text{i<j}} (C_1^k \cdot C_j^k) \right) l^n S_3 L_3 (s \ l'', s \ l''') S_1 \ L_1 \ ; S_2 \ L_2 \ | l^n S_3 L_3 (s \ l''', s \ l''') S_3 \ L_3 \ ; S_4 \ L_4 \right)
\]

\[
= n \sum_{\Psi} (\Psi_1 \ | \ \Psi) (\Psi_2 \ \{ \Psi) \]

\[
\times (l^n-I^{a} S \ L, s \ l, S_1 \ L_1 \ (s \ l', s \ l'') S_1 \ L_1 \ ; S_2 \ L_2 \ | (C_1^k \cdot C_j^k) | l^n-I^{a} S \ L, s \ l, \]

\[
S_3 \ L_3 (s \ l''', s \ l''') S_3 \ L_3 \ ; S_4 \ L_4 \right),
\]

(1)
where the \((\psi|\bar{\psi})\) are the usual coefficients of fractional parentage\(^4,5\) and
the scalar products, \((C_i^k \cdot C_j^k)\), are tensorial sets of spherical harmonics.\(^6\)

The matrix element in (1) may now be examined. First a series of recouplings\(^6\) of the type

\[
\left((\bar{s}s) S_1, (ss) S_1^\prime; S_2, \overline{(ss) S_1} \right) = (-1)^{S+S_1+S_2} \left([S_1][\sigma] \right)^{1/2} \left\{ \begin{array}{c} S_1^\prime \ 0 \ 0 \\
S_2 \ s \ \sigma \end{array} \right\}
\] (2)

is made, where \([\sigma] \) etc., are understood as \((2\sigma+1)\) etc. Upon recoupling in
both spin and orbital space, the matrix element in right-hand side (rhs) of
(1) becomes

\[
\sum_{\sigma, \lambda, \sigma', \lambda'} (-1)^{S_1' + S_2' + L_1' + L_3'} \delta(\sigma, \sigma') \delta(\lambda, \lambda') \delta(S_2, S_4) \delta(L_2, L_4)
\times \left([S_1][S_3][L_1][L_3] \right)^{1/2} \left[\begin{array}{c} S_1 \ S_2 \ S_1 \\
S \ s \ \sigma \end{array} \right] \left[\begin{array}{c} S_3 \ S_4 \ S_3 \\
S \ s \ \sigma \end{array} \right]
\times \left\{ \begin{array}{c} L_1' \\
L_2 \\
L_1 \end{array} \right\} \left\{ \begin{array}{c} L_3' \\
L_4 \\
L_3 \end{array} \right\} (\sigma \lambda | (C_i^k \cdot C_j^k) | \sigma' \lambda')
\] (3)

where

\[
(\sigma \lambda | (C_i^k \cdot C_j^k) | \sigma' \lambda') = \left((sS_1') \sigma, (\ell L_1') \lambda | (C_i^k \cdot C_j^k) | (sS_3') \sigma', (\ell L_3') \lambda \right).
\] (4)

Thus there remains only to evaluate the matrix elements in (4) for three
electrons and then perform the sum over \(\sigma\) and \(\lambda\) in (3). For direct inter­
actions the calculation is quite straightforward,\(^6\) and after application of the
Biedenharn-Elliott sum rule\(^3\) to the sum over \(\lambda\), the matrix element on the
The rhs of Eq. (1) becomes, for direct interactions,

\[
(-1)^{l_1} L_1' + L_1 + L_2 + \ell + k \begin{pmatrix} \ell & k & \ell \\ 0 & 0 & 0 \end{pmatrix} (L_1' \| C_j^k \| L_3') \begin{pmatrix} L_3' & k & L_1' \\ L_1' & L_2 & L_3' \end{pmatrix} (\psi_1 \| U^k \| \psi_3),
\]

(5)

where

\[
(\psi_1 \| U^k \| \psi_3) = n \begin{pmatrix} L_1 \| L_3 \end{pmatrix} \frac{1}{\psi} \sum \psi \begin{pmatrix} \psi \| \psi \end{pmatrix} (-1)^{L_1 + L_2 + \ell + k} \begin{pmatrix} \ell & L_1 & L_3' \\ L_3' & \ell & \ell \\ \ell & \ell & \ell \end{pmatrix}.
\]

(6)

If the coefficients of the radial integral \(R^k(\ell \ell' \ell'' \ell''') \) are required, the matrix element in (5) is evaluated by putting

\[
(\ell \ell' L_1' \| C_1^k \| \ell'' \ell''' L_3') = (-1)^{\ell'' + L_3' + k} \begin{pmatrix} \ell \| \ell \end{pmatrix} \begin{pmatrix} \ell'' \| \ell''' \end{pmatrix} \begin{pmatrix} L_1' \| L_3' \| L_1' \| L_3' \| L_1' \| L_3' \end{pmatrix} \frac{1}{2} \delta (\ell'', \ell'''),
\]

(7)

whereas if the coefficients of \(R^k(\ell \ell'' \ell''' \ell''') \) are required, we write

\[
(\ell \ell'' L_1' \| C_2^k \| \ell''' \ell''' L_3') = (-1)^{\ell'' + L_3' + k} \begin{pmatrix} \ell \| \ell \end{pmatrix} \begin{pmatrix} \ell'' \| \ell''' \end{pmatrix} \begin{pmatrix} L_1' \| L_3' \| L_1' \| L_3' \| L_1' \| L_3' \end{pmatrix} \frac{1}{2} \delta (\ell'', \ell'''),
\]

(8)
The coefficients of \(R^k(\ell \ell'; \ell'' \ell''') \) are trivial and need not be considered here. If the electrons external to the core are equivalent, we need only replace the matrix element \((L_1' || C_j^k || L_3')\) in (5) by

\[
(-1)^{\ell'} \begin{pmatrix} \ell & k & \ell' \\ 0 & 0 & 0 \end{pmatrix} (L_1' || U^k || L_3'), \tag{9}
\]

where

\[
(L_1' || U^k || L_3') = 2\left(\begin{bmatrix} L_1' \\ L_3' \end{bmatrix}\begin{bmatrix} L_3' \\ L_1' \end{bmatrix}\right)^{1/2} (-1)^{L_1'+k} \begin{bmatrix} L_1' & L_3' & k \\ \ell & \ell' & \ell' \end{bmatrix}. \tag{10}
\]

If the direct interactions between \(\ell'' \ell''\) and \(\ell'' \ell'' \) are of interest, we may evaluate the coefficients of the radial integrals \(R^k(\ell \ell'; \ell'' \ell''') \) and \(R^k(\ell'' \ell''; \ell'' \ell''') \) by putting \(\ell' = \ell'' \) in Eq. (7) and (8).

The exchange-type interactions may be treated by performing a recoupling of the angular momentum such as to interchange the positions of two particles. The angular part of the interactions will give rise to the coefficients of three basic types of radial integrals \(R^k(\ell \ell'; \ell'' \ell''') \), \(R^k(\ell'' \ell''; \ell'' \ell''') \), and \(R^k(\ell'' \ell''; \ell'' \ell''') \). The third type is amenable to the usual two-electron treatment and will not be discussed. The calculation of the matrix elements of the exchange interactions proceeds, in a manner similar to that used for the direct interactions, by first performing a recoupling on the right-hand side of (4), summing over and eliminating the new angular momenta (spin and orbit) that enter the expression, returning the result to equation (3), and performing the summation over \(\sigma \) and \(\lambda \). The procedure is lengthy though quite straightforward, and hence only the results are given.
For $R^k(\ell \ell'; \ell''', \ell)$, the matrix elements on the rhs of Eq. (1) are given by

\[
n[\ell] \left[\ell \right] [\ell'] [\ell''] [L_1] [L_3] [L_1'] [L_3'] [S_1] [S_3] [S_1'] [S_3'] \right]^{1/2} (-1)^{\ell''+k} \delta(\ell', \ell''', \ell') \times \left(\begin{array}{ccc} \ell & k & \ell' \\
0 & 0 & 0 \end{array} \right) \left(\begin{array}{ccc} \ell' & k & \ell \\
0 & 0 & 0 \end{array} \right) \delta(\ell', \ell''', \ell')
\]

\[
\times \sum_{\psi} \langle \psi_{1} \left| \left[\bar{\psi} \right] \right| \psi_{3} \left| \left[\bar{\psi} \right] \right| \rangle \begin{cases} \bar{S} & S_3^1 & 1/2 \\
S_1 & S_2 & S_1 \\
1/2 & S_3 & 1/2 \end{cases} \begin{cases} \ell'' & \ell''' & L_3^1 \\
\ell & k & L_1^1 \\
L_1 & L_2 & L_3 \end{cases} , \quad (11)
\]

while for $R^k(\ell \ell'''; \ell'' \ell)$, the matrix elements on the rhs of Eq. (1) are given by

\[
n[\ell] \left[\ell' \right] [\ell'''] [L_1] [L_3] [L_1'] [L_3'] [S_1] [S_3] [S_1'] [S_3'] \right]^{1/2} (-1)^{S_3^1+S_1^1} \delta(\ell', \ell''', \ell') \times (-1)^{S_1^1+S_3^1+L_1^1+L_3^1} \times k \left(\begin{array}{ccc} \ell & k & \ell' \\
0 & 0 & 0 \end{array} \right) \left(\begin{array}{ccc} \ell' & k & \ell \\
0 & 0 & 0 \end{array} \right) \delta(\ell', \ell''', \ell')
\]

\[
\times \sum_{\psi} \langle \psi_{1} \left| \left[\bar{\psi} \right] \right| \psi_{3} \left| \left[\bar{\psi} \right] \right| \rangle \begin{cases} \bar{S} & S_3 & 1/2 \\
S_1 & S_2 & S_1 \\
1/2 & S_3 & 1/2 \end{cases} \begin{cases} \ell & \ell'' & L_3^1 \\
\ell & k & L_1^1 \\
L_1 & L_2 & L_3 \end{cases} , \quad (12)
\]

where the last factor in each expression is a standard 12-j symbol. \(^3\)
In the case in which the electrons added to the \(\ell^n \) core are all equivalent (though \(\ell \neq \ell' \)), the expression

\[
2n[\ell][\ell']([L_1][L_3][L_1'][L_3'][S_1][S_3][S_1'][S_3'])^{1/2} (-1)^k \left(\begin{array}{c} \ell \ k \\ 0 \ 0 \ 0 \end{array} \right)
\]

results.

For the interaction between \(\ell^n \ell' \) and \(\ell^n \ell'' \ell''' \) we put \(\ell' = \ell'' \) in Eqs. (11) and (12).

These formulae undergo considerable simplification when one or more of the angular momenta in the \(n-j \) symbols are zero.

CONFIGURATION INTERACTION BETWEEN \(\ell^n \ell' \) and \(\ell^n \ell'' \)

Judd\(^7\) has already treated the electrostatic interaction within the configuration \(\ell^n \ell' \). His expressions may be readily generalized to give for the direct interaction the coefficients of \(R^k(\ell \ell'; \ell \ell'') \) as

\[
\left(\ell^n S_1 L_1 s_{\ell'}; S_2 L_2 \right| \left. \sum_{i<j} (C_{i}^{k} \cdot C_{j}^{k}) \ell^n S_3 L_3 s_{\ell''}; S_4 L_4 \right) = ([\ell'][\ell''])^{1/2} \delta(S_2 S_4) \delta(L_2 L_4)
\]

\[
\times \left(\begin{array}{c} \ell \ k \\ 0 \ 0 \ 0 \end{array} \right) \left(\begin{array}{c} \ell' \ k \ell' \\ \ell \ k \ell \end{array} \right) \left(\begin{array}{c} \ell' \ k \ell' \\ \ell \ k \ell \end{array} \right) \left(\psi_1 || \psi_3 \right),
\]

(14)
whereas for the exchange interaction the coefficients of $R^k(\ell\ell'; \ell'' \ell)$ are given by

$$n[\ell'](l'[\ell'][\ell''][S_1][S_3][L_1][L_3])^{1/2} (-1)^{S_1 + S_3} \begin{pmatrix} l' & k & \ell \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \ell'' & k & \ell \\ 0 & 0 & 0 \end{pmatrix}$$

$$\times \sum_{\psi} \left(\left. \psi_1 \right| \left(\psi_3 \left| \psi \right. \right) \right) \left\{ \begin{array}{c} S_2 \ S_3 \\ S_1 \end{array} \right\} \left\{ \begin{array}{c} \ell \ L_3 \\ \ell' \ L_1 \\ \ell'' \ L_2 \end{array} \right\}. \quad (15)$$

CONFIGURATION INTERACTION BETWEEN ℓ^n and $\ell^{n-1} \ell'$

Racah\(^1\) has obtained an expression for the matrix elements of the electrostatic interaction between d^n and $d^{n-1}s$. This result may be considerably simplified to give, for the coefficients of $R^k(\ell\ell'; \ell'' \ell)$,

$$\left(\ell^n \begin{array}{c} S_2 \\ L_2 \end{array} | \sum_{i < j} (C_i^k \cdot C_j^k) | \ell^{n-1} \begin{array}{c} S_3 \\ L_3 \end{array} \ell' \begin{array}{c} S_4 \\ L_4 \end{array} \right)$$

$$= (-1)^{L_2 + L_3 + \ell} \delta(S_1, S_3) \delta(S_2, S_4) \delta(L_2, L_4)[n[\ell]][\ell']^{1/2} \begin{pmatrix} \ell & k & \ell \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \ell'' & k & \ell \\ 0 & 0 & 0 \end{pmatrix}$$

$$\times \sum_{\psi_1} \left(\left. \psi_1 \right| \left(\psi_1 \left| \psi \right. \right) \right) \left\{ \begin{array}{c} L_3 \\ k \ L_1 \\ \ell \end{array} \right\} \left\{ \begin{array}{c} \ell \ L_2 \\ L_2' \end{array} \right\}. \quad (16)$$

where ψ_1 are the parents of the $S_2 \ L_2$ state of ℓ^n.
CONCLUSIONS

The application of simple recoupling techniques results in formulae that are considerably more amenable to machine calculation. The appearance of the 9-j and 12-j symbols in (9) and (10) need not disturb us, as they may be readily evaluated by standard programming techniques. The present formulae possess the advantage of requiring a minimum use of the sums over coefficients of fractional parentage with the emphasis placed on the coupling of the electrons. It might be hoped that these formulae could be further simplified. However, except for the trivial cases in which one (or more of the inequivalent electrons is an s electron, no fundamental simplification seems possible without explicit formulae for the coefficients of fractional parentage.

These results are presented with hope that they will eventually lead to the machine computation of the energy matrices of many of the configurations discussed in this paper.

ACKNOWLEDGMENT

The work reported in this paper was greatly aided by a communication from Dr. B. R. Judd, to whom the author expresses his appreciation.
FOOTNOTES AND REFERENCES

*Work done under the auspices of the U. S. Atomic Energy Commission.

†Present address: Division of Chemistry, Argonne National Laboratory, Lemont, Illinois.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.