Title
THE CP-NONCONSERVING DECAY K1→ n+ n- n

Permalink
https://escholarship.org/uc/item/05v083n4

Authors
Anderson, Jared A.
Crawford, Frank S.
Golden, Robert L.
et al.

Publication Date
1965-02-05
THE CP-NONCONSERVING DECAY \(\kappa_1^0 \rightarrow \pi^+ \pi^- \pi^0 \)

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ERRATUM

TO: All recipients of UCRL-11938

FROM: Technical Information Division

Subject: UCRL-11938, "THE CP-NONCONSERVING DECAY $K_1^0 \to \pi^+ \pi^- \pi^0$" by Jared A. Anderson, Frank S. Crawford, Jr., Robert L. Golden, Donald Stern, Thomas O. Binford, and V. Gordon Lind, dated February 5, 1965. [Phys. Rev. Letters 14, 475 (1965)].

Our paper contains an internal inconsistency in sign convention. Our corrected results for $y = [(m_2 - m_1)/(m_2 + m_1)] \text{Im}(a_1/a_2)$ in Eqs. (2) and (3) are $y = -1.00 \pm 0.65$ and -0.80 ± 0.55, respectively. The sign of y should also be reversed in footnotes 7 and 10, and in the labeling of Figs. 1 and 2. We are indebted to Y. Tomozawa for his observation.
ADDENDUM

The CP-Nonconserving Decay $K_1^0 \rightarrow \pi^+ \pi^- \pi^0$

Jared A. Anderson, Frank S. Crawford, Jr., Robert L. Golden, Donald Stern, Thomas O. Binford, and V. Gordon Lind

[Phys. Rev. Letters 14, 475 (1965)]

April 8, 1965

Glashow and Weinberg have pointed out to us that if the decay $K_1^0 \rightarrow (+-0)$ is allowed, its amplitude should be imaginary, relative to that for $K_2^0 \rightarrow (+-0)$. Thus we expect $x = 0$ in $a_1 (+-0) / a_2 (+-0) \equiv x + iy$. Our result is $x = +0.25 \pm 0.65; y' \equiv y (m_2 - m_1) / \left| m_2 - m_1 \right| = +1.00 \pm 0.65$. Thus $x = 0$ is consistent with our result.

Imposing the constraint $x = 0$ and reanalyzing our 18 events, we find

$$y' = +0.90 \pm 0.50.$$ \hspace{1cm} (1)

The corresponding intensity ratio is

$$\Gamma_1 (+-0) / \Gamma_2 (+-0) = y^2 = 0.81^{+1.15}_{-0.65}. \hspace{1cm} (2)$$

We find odds of 10 to 1 that $\Gamma_1 (+-0) / \Gamma_2 (+-0)$ is less than 2.5, and 100 to 1 that it is less than 5. The effect of the observation of Glashow and Weinberg is to reduce our upper limit on $\Gamma_1 (+-0) / \Gamma_2 (+-0)$ by a factor of two.

We still cannot rule out $\Gamma_1 (+-0) / \Gamma_2 (+-0) = 0$.

1. Sheldon L. Glashow and Steven Weinberg, accompanying paper.
UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California
AEC Contract No. W-7405-eng-48

THE CP-NONCONSERVING DECAY $K_1^0 \rightarrow \pi^+ \pi^- \pi^0$

Jared A. Anderson, Frank S. Crawford, Jr., Robert L. Golden,
Donald Stern, Thomas O. Binford, and V. Gordon Lind

February 5, 1965
The CP-Nonconserving Decay $K_4^0 \rightarrow \pi^+ \pi^- \pi^0$†

Jared A. Anderson, Frank S. Crawford, Jr., and Robert L. Golden

Lawrence Radiation Laboratory, University of California
Berkeley, California

and

Donald Stern,* Thomas O. Binford, and V. Gordon Lind††

University of Wisconsin, Madison, Wisconsin

February 5, 1965

In our paper 1 on the absolute decay rate $\Gamma_2(\pm 0)$ for $K_2^0 \rightarrow \pi^+ \pi^- \pi^0$, we made the observation that the time distribution of our sixteen $\pi^+ \pi^- \pi^0$ events is completely compatible with $\Gamma_4(\pm 0) = 0$, where $\Gamma_4(\pm 0)$ is the rate for $K_4^0 \rightarrow \pi^+ \pi^- \pi^0$. Thus our results are consistent with CP invariance. 2

In reference 1 we imposed the constraint $\Gamma_4(\pm 0) = 0$ in obtaining the result $\Gamma_2(\pm 0) = (2.90 \pm 0.72) \times 10^6$ sec$^{-1}$.

We have discovered that two good events were inadvertently omitted from that paper. 3 Adding these two events to the sample of reference 1, we find that $\Gamma_4(\pm 0)$ is still consistent with zero. Our corrected result is $\Gamma_2(\pm 0) = (3.26 \pm 0.77) \times 10^6$ sec$^{-1}$, still in good agreement with the prediction $\Gamma_2(\pm 0) = (2.87 \pm 0.23) \times 10^6$ sec$^{-1}$ of the $\Delta I = 1/2$ rule.

The discovery 4 that CP invariance may not hold in neutral kaon decay admits the possibility that $\Gamma_4(\pm 0)$ is of the same order of magnitude as $\Gamma_2(\pm 0)$. 5 In this paper we reanalyze our eighteen events without the assumption that $\Gamma_4(\pm 0)$ is zero, and thus without the assumption of CP invariance.

Let a_4 and a_2 denote the complex amplitudes for K_4^0 and K_2^0 decay into $\pi^+ \pi^- \pi^0$, where K_4^0 and K_2^0 refer to the short- and long-lived decay.
eigenstates; let x and y denote the real and imaginary parts of $a_1/a_2 = x + iy$. Then for K^0 produced at time $t = 0$ via the reaction $\pi^- + p \rightarrow \Lambda + K^0$, the total decay rate into $\pi^+\pi^-\pi^0$ has the form:

$$\Gamma (+0) = \frac{1}{2} |a_2|^2 |1 + (x + iy) \exp(-t/2T_1 + i\omega)|^2, \quad (1)$$

where $|a_2|^2 = \Gamma_2(+0)$, $|a_1|^2 = \Gamma_4(+0)$, $m = m_2 - m_1$, and where we can (for our experiment) take the K^0_2 lifetime to be effectively infinite as far as the time dependence of (1) is concerned. For each event we construct an a priori decay probability p_i based on Eq. (1) and normalized to unity for decay between $t = 0$ and $t = T_1$, where T_1 is the potential time for the event. We then construct the likelihood function $L(x, y) = \prod_i p_i$. From a contour plot of $L(x, y)$ we obtain the results:

$$x = +0.25 \pm 0.65, \quad y = +1.00 \pm 0.65. \quad (2)$$

Figure 1 shows a comparison of the data with the time distribution corresponding to the result (2).

In the above analysis we made use of only the time distribution of the 18 events. We now reanalyze these events with the additional hypothesis that $\Gamma_2(+0)$ satisfies the $\Delta I = 1/2$ rule, which predicts:

$$\Gamma_2(+0) = (2.87 \pm 0.23) \times 10^6 \text{ sec}^{-1}. \quad (3)$$

We construct a likelihood function $L_1(x, y)$ by multiplying the likelihood $L(x, y)$ by the Poisson probability $e^{-\bar{n}n}/n!$; here $n = 18$ is our observed total number of events, and $\bar{n} = \bar{n}(x, y)$, is the total predicted number of events calculated by combining the $\Delta I = 1/2$ rule, the size of our sample of K^0, the time distribution (1), and our geometrical detection efficiency $\epsilon(t)$, which is the smooth curve plotted in Fig. 1. In Fig. 2 we show a contour plot of $L_1(x, y)$. From this plot we obtain the results:

$$x = +0.25 \pm 0.55, \quad y = +0.80 \pm 0.55. \quad (3)$$
The most-likely value for \(x^2 + y^2 = \Gamma_1(+0)/\Gamma_2(+0) \) is 0.70. If we integrate over the relative phase of \(a_1 \) and \(a_2 \) in the likelihood function we obtain a probability distribution for \(\Gamma_1(+0)/\Gamma_2(+0) \).

We conclude that the odds are 9 to 1 that \(\Gamma_1(+0)/\Gamma_2(+0) \) is less than 5. Our best estimate for the amplitude ratio \(a_1(+0)/a_2(+0) = x + iy \) is given by Eq. (3). We cannot rule out \(a_1(+0)/a_2(+0) = 0 \).

We are grateful to Sheldon L. Glashow for stimulating discussions, and to Luis W. Alvarez for his interest and support, and for valuable comments.
Footnotes and References

† Work performed under auspices of the U. S. Atomic Energy Commission.

* Present Address: NESCO, 711 S. Fair Oaks, Pasadena, California

†† Present Address: Utah State University, Logan, Utah.

2. In K(neutral) → π⁺ π⁻ π⁰, pion angular-momentum states higher than S
states are strongly suppressed by angular-momentum barrier-penetration
factors. If the pions are in S states, π⁺ π⁻ π⁰ has CP = -1; hence
K₁⁰ → π⁺ π⁻ π⁰ is forbidden by CP invariance.

3. In the notation of Table I of reference 1, they are event 1845161:
χ²(prod) = 3.4, χ²(dec) = 1.7, pK₀ (lab) = 590 ± 9, tK₀ = 5.31; T₁K₀ = 14.7.

event 1849320: 1.1, 1.1, 628 ± 8, 21.1, 31.1.

Rev. Letters 13, 138 (1964); see also A. Abashian, R. J. Abrams, D. W.

6. Equation (1) is not exact; it is based on the approximation a = 1 and
b = 0 in
K₀ = a(|K₁⟩ + |K₂⟩)/√2 + b(|K₁⟩ - |K₂⟩)/√2 ,

whereas actually a = 1 and b are each of order 10⁻³ according to reference 4.

For the experiment reported here this contributes a negligible correction to
Eq. (1), because we can determine a₁/a₂ only to about ±1, not to ±10⁻³.
7. We use $\tau_1 = 0.89 \times 10^{-10}$ sec, and $|m| = 0.75 \times 10^{10}$ sec$^{-1}$ (which is $0.67/\tau_1$). The choice 0.75 is our weighted average of the values summarized in Table I of T. Fujii, J. V. Jovanovich, F. Turkot, and G. T. Zorn, Phys. Rev. Letters 13, 253 (1964). Our result (2) is however, quite insensitive to the precise value we choose for $|m|$, for $|m|$ between 0.4 and $1.1 \times 10^{+10}$ sec$^{-1}$. For example, for $|m| = 0.50$, we obtain $x = +0.6 \pm 0.7$, $y = +1.1 \pm 0.7$; for $|m| = 1.00$ we find $x = 0.1 \pm 0.7$, $y = +0.9 \pm 0.7$.

8. The decay times t_i are listed in Table I of reference 1. The potential times T_i for the 18 events are as follows (in the order of that table, and in units of 10^{-10} sec): 11.88, 24.24, 15.65, 8.12, 7.72, 4.13, 6.92, 17.62, 13.06, 11.76, 9.83, 8.59, 14.20, 3.99, 153.0, 22.4; 14.7, and 31.1.

9. The quoted errors correspond to a decrease of the likelihood function $L(x, y)$ by a factor $e^{-1/2}$ from its maximum value. We prefer to give our results in terms of x and y rather than in terms of $\Gamma_4/\Gamma_2 = x^2 + y^2$ and the phase $\phi = \text{arg}(a_4/a_2)$, because the likelihood function $L(x, y)$ is to a fair approximation given by $L = f(x)f(y)$, where $f(x)$ and $f(y)$ are nearly Gaussian in shape. The probability distribution for Γ_4/Γ_2 is, on the contrary, very non-Gaussian.

10. The sign of x is determined (in principle) by this experiment, but the sign of y is not separable from that of $m_2 - m_1$. Thus our result (2) for y is actually $[(m_2 - m_1) / |m_2 - m_1|] \times +1.00 \pm 0.65$. In writing (2) we take $m_2 - m_1$ to be positive.

11. If the result (2) were known to be exact, we would have to assign 18% of the observed counts to K_4^0 decay. Then our measured value of $\Gamma_2(\pm 0)$ would be corrected by a factor of 0.82 to $\Gamma_2(\pm 0) = 0.82 \times (3.26 \pm 0.77) = (2.65 \pm 0.63) \times 10^6$ sec$^{-1}$.
12. Inspection of Fig. 1 suggests that (within the large statistical uncertainties) \(x = y = 0 \) fits the data slightly better than the maximum-likelihood result (2). This slight apparent inconsistency is mainly due to the fact that in \(L(x, y) \) we make use of the individual decay times \(t_i \) and potential times \(T_i \) of the 18 events; each \(t_i \) is correlated with its own \(T_i \) in the factor \(p_i \). The function \(\epsilon(t) \) in Fig. 1 is on the contrary based on a smoothed distribution of potential times obtained from several thousand associated-production events.

13. The prediction \(\Gamma_2(\pm 0) = 2.87 \times 10^6 \text{ sec}^{-1} \) is based on a weighted average of results for \(\Gamma_4(\pm 0) \) compiled in Table I of G. Alexander and F. S. Crawford, Jr., Phys. Rev. Letters 9, 68 (1962).
Figure Captions

Fig. 1. Time distribution. The smooth curve is the geometrical detection efficiency $\epsilon(t)$, normalized so that it represents dN/dt for the 18 events, if they are due to K_2^0 only, i.e., $x = y = 0$. The histogram corresponds to dN/dt predicted by the maximum-likelihood result (2). The points with error flags are the observed events.

Fig. 2. Contours of equal likelihood for $x = \text{Re}(a_1/a_2)$ and $y = \text{Im}(a_1/a_2)$, where a_1 and a_2 are the amplitudes for K_1^0 and K_2^0 decay into $\pi^+ \pi^- \pi^0$. The contours labeled 1 std dev, 2 std dev, and 3 std dev correspond to a decrease in the likelihood function $L_1(x, y)$ by factors $e^{-1/2}$, $e^{-4/2}$, and $e^{-9/2}$ from L_1 (max).
\[\Delta N / \Delta t \quad \text{(Counts per } 10^{-10} \text{ sec)} \]

- Fig. 1

\[x = y = 0 \]
\[x = +0.25 \]
\[y = +100 \]
\[|m| = 0.75 \]
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.