UC Berkeley
Earlier Faculty Research

Title
Impact of California Reformulated Gasoline on Motor Vehicle Emissions. 2. Volatile Organic Compound Speciation and Reactivity

Permalink
https://escholarship.org/uc/item/0615w0m0

Authors
Kirchstetter, Thomas
Singer, Brett
Harley, Robert

Publication Date
1999
Impact of California Reformulated Gasoline On Motor Vehicle Emissions
2. Volatile Organic Compound Speciation and Reactivity

Thomas W. Kirchstetter
Brett C. Singer
Robert A. Harley

Gary R. Kendall
Michael Traverse

Reprint
UCTC No. 413
The University of California Transportation Center

The University of California Transportation Center (UCTC) is one of ten regional units mandated by Congress and established in Fall 1988 to support research, education, and training in surface transportation. The UC Center serves federal Region IX and is supported by matching grants from the U.S. Department of Transportation, the California Department of Transportation (Caltrans), and the University.

Based on the Berkeley Campus, UCTC draws upon existing capabilities and resources of the Institutes of Transportation Studies at Berkeley, Davis, Irvine, and Los Angeles; the Institute of Urban and Regional Development at Berkeley; and several academic departments at the Berkeley, Davis, Irvine, and Los Angeles campuses.

Faculty and students on other University of California campuses may participate in Center activities. Researchers at other universities within the region also have opportunities to collaborate with UC faculty on selected studies.

UCTC’s educational and research programs are focused on strategic planning for improving metropolitan accessibility, with emphasis on the special conditions in Region IX. Particular attention is directed to strategies for using transportation as an instrument of economic development, while also accommodating to the region’s persistent expansion and while maintaining and enhancing the quality of life there.

The Center distributes reports on its research in working papers, monographs, and in reprints of published articles. It also publishes Access, a magazine presenting summaries of selected studies. For a list of publications in print, write to the address below.

University of California Transportation Center

108 Naval Architecture Building
Berkeley, California 94720
Tel: 510/643-7378
FAX: 510/643-5456

The contents of this report reflect the views of the author, who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California or the U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation.
Impact of California Reformulated Gasoline on Motor Vehicle Emissions

2. Volatile Organic Compound Speciation and Reactivity

Thomas W. Kirchstetter
Brett C. Singer
Robert A. Harley

Department of Civil and Environmental Engineering
University of California, Berkeley
Berkeley, CA 94720-1710

Gary R. Kendall
Michael Traverse

Technical Services Division, Bay Area
Air Quality Management District
939 Ellis Street
San Francisco, CA 94109

Reprinted from
Environmental Science & Technology

UCTC No. 413
The University of California Transportation Center
University of California at Berkeley
Impact of California Reformulated Gasoline on Motor Vehicle Emissions. 2. Volatile Organic Compound Speciation and Reactivity

THOMAS W. KIRCHSTETTER, BRITT C. SINGER, AND ROBERT A. HARLEY
Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710

GARY R. KENDALL AND JAMES M. HESSON
Technical Services Division, Bay Area Air Quality Management District, 939 Ellis Street, San Francisco, California 94109

This paper addresses the impact of California phase 2 reformulated gasoline (RFG) on the composition and reactivity of motor vehicle exhaust and evaporative emissions. Significant changes to gasoline properties that occurred in the first half of 1996 included an increase in oxygen content; decreases in alkene, aromatic, benzene, and sulfur contents; and modified distillation properties. Vehicle emissions were measured in a San Francisco Bay Area roadway tunnel in summers 1994–1997; gasoline samples were collected from local service stations in summers 1995 and 1996. Equilibrium gasoline headspace vapor composition was calculated from measured liquid gasoline composition. Addition of methyl tert-butyl ether (MTBE) and reduction of alkenes and aromatics in gasoline between summers 1995 and 1996 led to corresponding changes in the composition of gasoline headspace vapors. Normalized reactivity of liquid gasoline and headspace vapors decreased by 23 and 19%, respectively. Ozone formation should be reduced because of both lower gasoline vapor pressure, which leads to lower mass emissions, and reduced reactivity of gasoline vapors. The reactivity of on-road emissions measured in the tunnel decreased by 8% or less. The reduction in reactivity of on-road emissions was less than that of evaporative emissions because of increased weight fractions of highly-reactive isobutene and formaldehyde in vehicle exhaust, which resulted from the increase use of MTBE in gasoline. On-road vehicle emissions of volatile organic compounds in the tunnel appear to be dominated by vehicles that have reduced catalytic converter activity.

Introduction

In California, major efforts have been made to reformulate gasoline to make it cleaner-burning. Phase 1 of California’s reformulated gasoline (RFG) program began in 1992 and required reduced gasoline vapor pressure during the summer ozone season, use of detergent additives to control engine deposits, and elimination of lead-based antiknock additives (1). Phase 2 of the California RFG program took effect in the first half of 1996 and required more extensive changes to gasoline properties (2, 3). Changes to gasoline included an increase in oxygen content; decreases in alkene, aromatic, benzene, and sulfur contents; a reduction in volatility; and decreases in distillation temperatures T_{50} and T_{90}.

Use of California RFG is intended to reduce summertime ozone air pollution by reducing emissions of ozone precursors: volatile organic compounds (VOC) and nitrogen oxides (NOx). RFG is also intended to reduce emissions of carbon monoxide and toxic organic compounds. In addition to expected reductions in vehicle exhaust mass emission rates, changes to gasoline composition can affect the speciation and reactivity of VOC emissions. The replacement of high-reactivity compounds such as alkenes with low-reactivity compounds such as methyl tert-butyl ether (MTBE) in gasoline is expected to result in corresponding changes in the composition of VOC emissions. Hoekman (4) reported significant changes to the speciation of exhaust VOC emissions when vehicles were fueled with a reformulated gasoline.

While tailpipe exhaust emissions of VOC are important, significant additional emissions of VOC are associated with gasoline evaporation (5–7). Evaporative emissions occur, for example, due to vehicle fuel system leaks, during refueling, during the “hot soak” period immediately following vehicle operation, and over the course of a diurnal temperature cycle, which causes pressure changes in the vapor space above liquid fuel in gasoline tanks. Depending on the mechanism by which evaporative VOC are emitted, the chemical composition may resemble either whole liquid gasoline or gasoline headspace vapors. The composition of whole fuel provides a good description of liquid leak emissions, and headspace vapors describe certain refueling emissions. The compositions of diurnal, hot-soak, and running loss emissions lie somewhere between these extremes.

The goal of this study was to determine the impacts of California phase 2 RFG on the speciation and reactivity of exhaust and evaporative VOC emissions. To this end, motor vehicle emissions were measured in a roadway tunnel, and gasoline samples were collected from service stations, prior to and after the introduction of RFG. The impacts of phase 2 RFG on mass emission rates are reported in a companion paper (8).

Methods

Gasoline Sampling and Analysis. Regular and premium grade gasoline samples were collected from high-volume service stations located in Berkeley in August 1995 and 1996. The service stations represented the top five gasoline brands in northern California. Composite liquid samples for each gasoline grade were prepared by mixing measured amounts of individual samples in a low-temperature bath. The resulting regular and premium grade composites were sales-weighted mixtures of the individual brand samples (9). In the Bay Area, regular, mid-, and premium grade gasolines represent 58, 20, and 22% of total market sales, respectively (9). Therefore, analytical results for the regular and premium grade composite gasoline samples were combined in proportions of 60 vol % regular and 32% premium to estimate the composition of the overall gasoline pool.

Detailed liquid gasoline speciation was determined for the composite gasoline samples by gas chromatography (10). Analyses were run on a Hewlett-Packard Model 5890 II GC equipped with dual flame ionization detectors (FID) and electric flow control. Primary analysis was performed using a 60 m DB-1 capillary column of 0.25 mm ID and 0.25 µm stationary phase thickness. Secondary analysis was performed in parallel using a 60 m DB-5 capillary column of 0.25 mm
serious errors in calculated vapor pressures. The Wagner equation for which Antoine coefficients were determined may lead to temperature for Reid vapor pressure determination. Parameters used in eq 1 to predict individual compound vapor pressures are provided in the Supporting Information accompanying this paper.

It has been noted (12) that extrapolation of the more widely used Antoine equation to temperatures outside the range for which Antoine coefficients were determined may lead to serious errors in calculated vapor pressures. The Wagner equation is more robust and gives the correct shape of a vapor pressure curve over a wider range of temperatures, from $T_r = 0.5$ to $T_r = 1.0$ (12). Only the heaviest constituents of gasoline have critical point temperatures above 600 K, so the Wagner equation provides accurate vapor pressure estimates for all of the lighter compounds that are important contributors to gasoline headspace vapor composition and reactivity.

Field Sampling Site. Vehicle emissions were measured in the center bore of the Caldecott tunnel. The Caldecott tunnel is a heavily used commuter tunnel located in the San Francisco Bay Area. Field measurements were conducted at the tunnel on 10 or more days during each summer from 1994 through 1997. Specific dates for each summer sampling season and a description of the tunnel are provided in a companion paper (8). Field sampling was conducted during the afternoon commute period from 1600 to 1800 h when traffic volume was high. At this time of day, vehicles traveled through the tunnel in the eastbound direction, on an uphill grade of 4.2%.

Emissions measured during this study at the Caldecott tunnel are representative of vehicles operating in a warmed-up mode. The nearest on-ramp providing access to the center bore of the tunnel is located more than 1 km away, and most vehicles using the tunnel during the afternoon commute travel longer distances before entering the tunnel.

Vehicle Attributes. Vehicles traveling in the center bore of the Caldecott tunnel were monitored to determine fleet characteristics and to compare fleet characteristics in each summer sampling season. Fleet composition and volume were determined from visual traffic counts, average speed inside the tunnel was measured by repeated drivethroughs, instantaneous speeds and accelerations inside the tunnel were measured using an instrumented vehicle, and vehicle age and fuel type were determined from license plate surveys. The main attributes of the traffic that traveled through the tunnel are summarized below. More detailed discussion of traffic characteristics is provided in ref 8.

The number of vehicles traveling through the tunnel was ~8400 during each 2-h sampling period and was consistent on all sampling days across all four summers. In all summers, vehicles traveled through the tunnel at average speeds of ~60 km h$^{-1}$. Traffic consisted almost exclusively of light-duty vehicles, about two-thirds of which were cars and one-third were a combination of pickups, sport utility vehicles, and small vans. Heavy-duty trucks comprised <0.3% of the vehicles in the center bore in each year. The average vehicle age was about 7 years in all four summers, and the average vehicle model year was about one year newer each summer. The light-duty fleet was almost entirely gasoline-powered. The fraction of light-duty vehicles identified as diesel-fueled ranged from 1 to 2%, and pre-1975 model year vehicles always comprised 2% or less of the vehicle fleet. Therefore, >95% of the vehicles traveling in the tunnel were originally equipped with catalytic converters.

VOC Measurements. Pollutant concentrations were measured in the traffic tube ~50 m before the tunnel exit and in the clean background air which was injected into the tunnel by ventilation fans. Background concentrations were subtracted from pollutant concentrations measured inside the tunnel to determine vehicle emissions. Two-hour integrated air samples were collected in 6-L stainless steel canisters for subsequent analysis to quantify hydrocarbon and MTBE concentrations. Similarly, 2-h integrated samples were collected using DNPH-impregnated silica cartridges for subsequent analysis to quantify carbonyl concentrations. A potassium iodide ozone scrubber was placed upstream of the silica cartridge used to collect carbonyl samples from the ventilation intake air because ozone has been shown to interfere with the quantification of carbonyl concentrations (13). A scrubber was not used when collecting carbonyl samples from tunnel air. Ozone drawn into the tunnel by ventilation is rapidly removed by reaction with nitric oxide and therefore does not interfere with carbonyl measurement.

Hydrocarbon concentrations in air samples collected in the canisters were determined by GC. Samples were preconcentrated using a Nutech Model 8548 cryogenic concentrator and injected into a Perkin-Elmer Model 8500 GC equipped with FID. The DB-1 column used in the GC was 30 m long with an inner diameter of 0.32 mm and a 5 μm film thickness. Following sample injection, the column temperature was held at ~51 °C for 5 min, then increased at 5 °C per minute to 100 °C, at 3 °C per minute to 160 °C, at 5 °C per minute to 200 °C, and held at that temperature for 7 min. This method was used to quantify speciated hydrocarbons in the C$_6$-C$_{10}$ range. A GS-alumina column, 50 m long by 0.53 mm inner diameter, was used to separate and quantify the C$_7$-C$_{10}$ hydrocarbons. For summer 1997 analyses only, a Nutech Model 3550A cryogenic concentrator was used to preconcentrate samples, and a DB-1 column was used to quantify all C$_2$-C$_{10}$ hydrocarbons.

Methane was quantified separately by direct injection of samples into a Perkin-Elmer Model 8500 GC equipped with FID and a 3.7 m long by 3.2 mm inner diameter stainless steel.
FIGURE 1. Composition of whole liquid gasoline and gasoline headspace vapors. Measured compositions of regular and premium grade gasolines were averaged according to the market share of each gasoline grade. Headspace vapor composition was predicted from measured liquid composition using eq 1.

Quality Assurance. Measured NMOC concentrations were compared with independent analyses of tunnel air samples collected in parallel in summers 1995–1997. Independent analyses were performed by the California Air Resources Board (21, 22), Desert Research Institute (23), and Rasmussen (24).

Measured concentrations of most individual hydrocarbons were in good agreement with independent analyses. In almost all cases, measured values agreed to within ±30% for species concentrations above 20 ppbC (total NMOC concentrations in the tunnel were typically 2 to 4 ppmC). Measured MTBE concentrations were in good agreement with measurements by Rasmussen but were 30% higher than values reported by Desert Research Institute. MTBE was not quantified in tunnel samples analyzed by the Air Resources Board.

Normalized reactivity was computed for each hydrocarbon sample using the speciation profile reported by each laboratory and eq 3. Computed normalized reactivity (R) for each colocated sample pair agreed within ±5%.

Results

Liquid Gasoline. As shown in summary form in Figure 1, the composition of the gasoline pool in 1996 differed markedly from that measured in 1995. Aromatic hydrocarbons constituted 44% of gasoline mass in 1995 and decreased to 29 wt % in 1996. Benzene content (included with aromatics in Figure 1) decreased from 2.0 to 0.6 wt %. Alkene content decreased from 5.7 to 2.6 wt %, mainly due to a reduction of Cs and C6 compounds, which comprised about two-thirds of gasoline alkene mass. These decreases were offset by increases in gasoline oxygenate and isoalkane content. The increase in oxygenate content from 1 to 11 wt % was due almost entirely to addition of MTBE to gasoline. Small amounts of tert-amyl methyl ether (TAME), typically less than 0.1 wt %, were present in some gasoline samples in both summers. Isoalkane content increased from 32 to 40 wt % between 1995 and 1996. Notable contributors to the increase in isoalkane content were highly branched, high-octane alkanes such as 2,2,4-trimethylpentane and 2,3,4-trimeth-
ylpentane which increased from 0.92 and 0.43 wt % in 1995 to 3.5 and 1.7 wt % of gasoline in 1996, respectively. Full liquid gasoline speciation profiles are included as Supporting Information accompanying this paper.

Figure 2 shows the contributions of NMOC groups to the total normalized reactivity of liquid gasoline. As indicated, aromatic hydrocarbons dominate the reactivity of unburned gasoline. Comparison of Figures 1 and 2 illustrates that aromatics and alkenes contribute more to gasoline reactivity than to gasoline mass, whereas alkanes and MTBE contribute much less to gasoline reactivity than to gasoline mass. Compared to unburned liquid gasoline in 1995, the reactivity of RFG was lower by 23%. The decrease in gasoline reactivity was due primarily to the decrease in gasoline aromatic content. The replacement of aromatic compounds in gasoline with MTBE was partly responsible for the decrease in gasoline reactivity because MTBE has low reactivity compared to most high-octane gasoline hydrocarbons. The reduction in alkene content also contributed to the reduction in gasoline reactivity.

Headspace Vapors. Headspace vapor composition profiles for 1995 and 1996 gasoline predicted using eq 1 are shown in Figure 1. The composition of headspace vapors is heavily weighted toward the lowest boiling components of gasoline. Low molecular weight alkanes are abundant; n-butane, n-pentane, and isopentane together accounted for about 50% of total headspace vapor mass for both 1995 and 1996 gasoline. Lighter aromatics, namely benzene and toluene, comprised more than 70% of the total aromatic hydrocarbon mass in headspace vapors. Consistent with changes in liquid gasoline composition between 1995 and 1996, the weight fraction of aromatics in headspace vapors decreased, as shown in Figure 1. A large reduction of benzene in headspace vapors, from 1.2 to 0.4 wt %, contributed more than half of the reduction in aromatics. The weight fraction of MTBE in headspace vapors rose dramatically from 1.5 to 16.8%. Full headspace vapor speciation profiles are included as Supporting Information to this paper.

As indicated in Figure 2, the reactivity of gasoline headspace vapors in 1996 was 19% lower than that of 1995 gasoline. This decrease was mostly due to the reduction of C5 and C6 alkenes in gasoline. Overall, headspace vapors are less reactive than liquid gasoline (see Figure 2). Normal and isooctanes, which dominate headspace vapor mass, have low reactivity. Also, compared to liquid gasoline, headspace vapors are depleted in the heaviest and most reactive aromatics, such as xylenes and trimethylbenzenes.

Predicted headspace vapor concentrations for the regular and premium grade gasoline samples were compared to those measured at 38 °C with a Reid vapor pressure test apparatus and a GC. GC analyses included determination of individual n-alkanes, isobutane, isopentane, 3-methylpentane, 3-cycloalkanes, 6 aromatic hydrocarbons, and MTBE. Other alkanes and aromatics, and all alkenes, were grouped by carbon number, e.g. total C5 alkenes. As shown in Table 1, gasoline headspace vapor composition predicted using eq 1 agreed with measured values.

Whereas a fixed temperature of 38 °C was used to measure and predict headspace vapor composition, a range of temperatures are relevant when considering evaporative emissions to the atmosphere. However, since vapor pressures of all gasoline components increase with temperature, the relative abundance of individual VOC in headspace vapors varies much less with temperature than absolute gasoline vapor pressure. This was demonstrated by repeating the analysis (eqs 1 and 2) of headspace vapor composition using a lower temperature of 24 °C. While the total vapor pressure of gasoline decreased, predicted headspace vapor composition did not change significantly.

On-Road Emissions. The composition of NMOC emissions measured in the Caldecott tunnel in summers 1994–1997 is summarized in Figure 3 and given in full detail in the Supporting Information. Changes to the composition of NMOC emissions between summers 1995 and 1996 were consistent with changes in gasoline composition that occurred over the same period. Weight fractions of total aromatics and benzene in tunnel NMOC emissions decreased from 33 to 26% and 5.4 to 3.3%, respectively, whereas MTBE increased from 0.7 to 5.5 wt %. Consistent with the addition of MTBE to gasoline, isobutene (included with alkenes in Figure 3) increased from 1.4 to 3.3 wt %, and formaldehyde (included with carbonyls) increased from 1.6 to 2.2 wt %. Other changes in on-road NMOC emissions between 1995 and 1996 included increases in the weight fractions of isooctanes and cycloalkanes and a decrease in the unidenti-
TABLE 1. Measured and Predicted Gasoline Headspace Vapor Composition for Regular and Premium Grade Gasoline Samples

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n-butane</td>
<td>9.1</td>
<td>10.8</td>
<td>10.2</td>
<td>11.3</td>
<td>6.2</td>
<td>6.4</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>isobutane</td>
<td>2.8</td>
<td>3.0</td>
<td>2.9</td>
<td>3.0</td>
<td>1.3</td>
<td>1.4</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>n-pentane</td>
<td>10.5</td>
<td>10.4</td>
<td>6.2</td>
<td>6.2</td>
<td>7.5</td>
<td>7.6</td>
<td>6.0</td>
<td>6.5</td>
</tr>
<tr>
<td>isopentane</td>
<td>38</td>
<td>37</td>
<td>40</td>
<td>38</td>
<td>38</td>
<td>34</td>
<td>38</td>
<td>37</td>
</tr>
<tr>
<td>n-hexane</td>
<td>2.2</td>
<td>2.1</td>
<td>1.4</td>
<td>1.4</td>
<td>1.7</td>
<td>1.7</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>benzene</td>
<td>1.5</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>toluene</td>
<td>2.1</td>
<td>1.8</td>
<td>2.6</td>
<td>2.2</td>
<td>1.2</td>
<td>1.6</td>
<td>1.9</td>
<td>1.6</td>
</tr>
<tr>
<td>MTBE</td>
<td>0.0</td>
<td>0.1</td>
<td>4.5</td>
<td>4.8</td>
<td>14.9</td>
<td>16.0</td>
<td>21.6</td>
<td>18.7</td>
</tr>
<tr>
<td>total C3 alkanes</td>
<td>1.6</td>
<td>1.6</td>
<td>8.8</td>
<td>8.7</td>
<td>1.1</td>
<td>1.1</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>total C6 alkenes</td>
<td>6.8</td>
<td>7.1</td>
<td>4.3</td>
<td>4.9</td>
<td>2.9</td>
<td>2.8</td>
<td>2.8</td>
<td>3.0</td>
</tr>
<tr>
<td>total C8 alkenes</td>
<td>2.4</td>
<td>2.2</td>
<td>1.0</td>
<td>1.0</td>
<td>0.8</td>
<td>0.8</td>
<td>1.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

*Headspace vapor concentrations measured at 38 °C with a Reid vapor pressure test apparatus and a GC. *Equilibrium headspace vapor concentrations predicted using measured composition of liquid gasoline samples and eq 1 (see text).

FIGURE 3. Composition of motor vehicle nonmethane organic compound emissions measured in the Caldecott tunnel.

The composition of NMOC emissions in the Caldecott tunnel was similar in summers 1994–1995 and in summers 1996–1997, as indicated in Figures 3 and 4. This was expected since the major changes to the properties of Bay Area gasoline occurred between summers 1995 and 1996 (8). Gasoline MTBE content decreased from 11 to 8% between 1996 and 1997 (8), and consistent with this decrease, weight fractions of MTBE, isobutene, and formaldehyde in on-road NMOC emissions also decreased.

Figure 5 compares the abundance of individual organic compounds in whole gasoline and tunnel NMOC. A distinctive feature of this figure is the linear relationship between the weight fractions of many individual compounds in tunnel NMOC and in whole gasoline. This relationship suggests that the origin of a significant fraction of NMOC in the tunnel is unburned gasoline. Combustion-derived species not present in gasoline, such as formaldehyde, ethene, propene, and isobutene, contribute significantly to NMOC mass and influence the overall reactivity of NMOC emissions. Taken together, C1–C3 organics plus isobutene contribute 20% of tunnel NMOC mass and 35% of tunnel NMOC reactivity. Compounds present in gasoline and found in tunnel NMOC at levels higher than expected due to emission of unburned gasoline alone suggest a contribution from running loss evaporative emissions. As discussed above, n-butane, n-pentane, isopentane, benzene, and toluene are abundant in headspace vapors. Benzene emissions may also be higher than expected due to formation of benzene during combustion, and because benzene may escape oxidation to a greater degree than other gasoline constituents. The abundance of MTBE in tunnel NMOC is lower than expected based on its concentration in gasoline, indicating that MTBE may be preferentially oxidized compared to other fuel constituents. This is consistent with findings reported by Hoekman (1992).
FIGURE 4. Contributions of organic compound groups to total normalized reactivity of vehicle emissions measured in the Caldecott tunnel.

FIGURE 5. Comparison of concentrations of individual organic compounds in tunnel NMOC emissions with their abundance in liquid gasoline. Based on summer 1996 fuel and tunnel air samples; only compounds accounting for >1 wt % of tunnel NMOC are shown.

Discussion

Fleet Turnover. As previously noted in 1994 (26), the VOC speciation profile measured in the Caldecott tunnel for vehicles operating in a hot-stabilized mode more closely resembled cold start exhaust than hot-stabilized emissions from well-maintained vehicles tested during the Auto/Oil program (27, 28). In particular, Caldecott tunnel and cold-start NMOC emissions were abundant in ethene and acetylene but depleted in methane. This suggested that on-road emissions were dominated by vehicles that lacked control of air/fuel ratio and had reduced catalytic converter efficiency. As reported here, the composition of on-road NMOC emissions changed in response to changes in gasoline composition. However, fleet turnover did not have a large impact on the speciation of NMOC emissions, as indicated by the similarity of tunnel NMOC emissions in summers 1994–1995 and summers 1996–1997 (see Figure 3 and Appendix Table 3 (Supporting Information)). The weight fraction of acetylene in tunnel NMOC was similar from 1994 to 1996, decreased from 2.3 to 2.2% between summers 1996 and 1997, and was still much higher in 1997 than measured in new vehicle exhaust during the Auto/Oil study (26). The most recent VOC species profile measured in the tunnel in summer 1997 still closely resembles Auto/Oil cold start emission profiles (27, 28).

Impact of Phase 2 RFG. Significant changes in the composition of gasoline occurred between 1995 and 1996 as a result of California’s phase 2 RFG program. As reported here for the San Francisco Bay Area, speciation profiles for exhaust and evaporative emissions changed significantly due
to changes in gasoline composition. Liquid gasoline and
headspace vapors now contain smaller amounts of com-
 pounds with high reactivity, such as alkenes and Cs aromatics. Emissions of headspace vapors that occur during
refueling and emissions of whole gasoline that result from
liquid leaks will therefore be less reactive. The reactivity of
diurnal, hot-soak, and running loss evaporative emissions
that have compositions lying between whole gasoline and
gasoline headspace vapors also will be reduced. Thus, part
of the air quality benefit of phase 2 RFG will be reductions
on the order of 20% in the reactivity of evaporative emissions.

Inventory estimates for the Bay Area indicate that vehicle
exhaust emissions comprised two-thirds, and evaporative
emissions comprised one-third, of summertime NMOC
emissions from on-road motor vehicles before the intro-
duction of RFG (29). Evaporative emissions that occur during
gasoline distribution and refueling also contribute significa-
tly to total NMOC emissions (30). Therefore, the reactivity
changes reported in this study for evaporative emissions do
affect a significant fraction of total NMOC emissions, but
smaller reductions in reactivity are expected for exhaust,
which is the larger contributor to vehicle-related NMOC
emissions.

The magnitude of the decrease in the reactivity of tunnel
NMOC emissions is uncertain because part of the decrease
was due to reduced unidentified mass between 1995 and
1996, as shown in Figures 3 and 4. Not counting the change
in reactivity due to the decrease in unidentified mass, the
net effect of the other speculation changes in tunnel NMOC
emissions was a 3% decrease in reactivity. This suggests the
decrease in reactivity of on-road NMOC emissions due to
RFG is likely between 3 and 8%. Alternatively, the effect of
RFG on the reactivity of running emissions can be assessed by
comparing NMOC composition measured in summers 1994
and 1995 since most gasoline properties were stable
between summers 1994 and 1995, and the unidentified
fraction of tunnel NMOC was the same in 1994 and 1996 (see
Figure 3). Between 1994 and 1996, the reactivity of tunnel
NMOC emissions decreased by 10%.

Reductions in gasoline vapor pressure (8) due to use of
RFG will reduce some types of evaporative emissions. For
example, refueling and diurnal evaporative emissions will
be reduced given reductions in gasoline vapor pressure.
The ozone-forming potential of evaporative emissions therefore
will be reduced both because of lower mass emission rates
and because of reduced reactivity. Note however, that not
all categories of evaporative emissions are sensitive to fuel
vapor pressure. For example, evaporative emissions due to
fuel spillage and leaks depend on the volume of liquid
escaping, not the vapor pressure.

Implications for Ozone Control. The reactivity scale (MIR)
used here is defined under conditions where VOC control is
most effective in reducing ozone. Reactivity changes reported
here are not applicable to conditions where ozone formation
is NOx-limited. Rather than focus on the absolute values of
the calculated reactivities shown in Figures 2 and 4, it is
more meaningful to consider the changes in reactivity relative
to 1995 baseline values. Relative changes in reactivity are
less sensitive than absolute values to environmental condi-
tions, model assumptions, and NOx availability (19). To
illustrate this point, reactivity calculations for gasoline
heads ace vapors were repeated using the maximum ozone
incremental reactivity (MOIR) scale (19), under conditions
where ozone formation is less sensitive to VOC emissions.
Absolute reactivities were 1.01 and 0.87 g of O3 per g of NMOC
in 1995 and 1996, respectively. While the calculated re-
activities for headspace vapors using the MOIR scale are much
lower than corresponding values based on the MIR scale (see
Figure 2), the relative changes in reactivity between 1995
and 1996 are still similar: -19% based on MIR values and
-14% based on the MOIR scale. Thus, changes to the
speculation of evaporative emissions due to RFG use should
lead to a less reactive mix of VOC emissions over a wide
range of atmospheric conditions.

Acknowledgments

The authors gratefully acknowledge the many people
who supported this work. In particular, we thank Graham Scovell,
Mike Traverse, and Rudy Zerrudo of the Bay Area Air Quality
Management District; Greg Noblet of UC Berkeley; Bart Croes,
Michele Dunlop, Herman Lau, Mike Miguel, Jim Pederson,
and Fred Schmidt of the California Air Resources Board; Don
Gilson, Kent Hoekman, David Kohler, and Andrea Tiedemann
of Chevron; Kohchy Fung of Atmospheric Assessment As-
sociates; Rei Rasmussen of Oregon Graduate Institute; John
Sagebel of Desert Research Institute; and Caltrans staff at
the Caldecott tunnel. This research was funded by the UC
Transportation Center from 1994 to 1995 and by the California
Air Resources Board (Contract 95-330) from 1996 to 1997.
The statements and conclusions in this paper are those of
the authors and not necessarily those of the funding agencies.

Supporting Information Available

Appendix 1 (measured composition of whole liquid gasoline
samples), Appendix 2 (composition of gasoline headspace vapor predicted using eq 1), Appendix 3 (composition of
NMOC emissions measured in the Caldecott tunnel), Ap-
pendix 4 (variables used to predict organic compound vapor
pressures) (31 pages). Ordering information is given on any
current masthead page.

Literature Cited

(3) Proposed amendments to the California phase 2 reformulated gasoline regulations, including amendments providing for
1992, paper no. 920323.
(8) Kirchstetter, T. W.; Singer, B. C.; Harley, R. A.; Kendall, G. R.; Traverse, M. Impact of California Reformulated Gasoline on
pages 212–215.
1430.
(21) Poore, M. Monitoring and Laboratory Division, California Air Resources Board, Sacramento, CA. Personal communication, 1996.
(22) Poore, M. Monitoring and Laboratory Division, California Air Resources Board, Sacramento, CA, Personal communication, 1997.
(23) Sagebiel, J. C. Desert Research Institute, Reno, NV, Personal communication, 1996.
(24) Rasmussen, R. Oregon Graduate Institute, Beaverton, OR, Personal communication, 1995.

Received for review April 15, 1998. Revised manuscript received September 17, 1998. Accepted October 20, 1998.
ES980374G