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Abstract

We consider the problem of optimally locating a single facility anywhere in a network to serve
both on-network and off-network demands. Off-network demands occur in a Euclidean plane,
while on-network demands are restricted to a network embedded in the plane. On-network
demand points are serviced using shortest-path distances through links of the network (e.g.,
on-road travel), whereas demand points located in the plane are serviced using more expensive
Euclidean distances. Our base objective minimizes the total weighted distance to all demand
points. We develop several extensions to our base model, including: (i) a threshold distance
model where if network distance exceeds a given threshold, then service is always provided
using Euclidean distance, and (ii) a minimax model that minimizes worst-case distance. We
solve our formulations using the “Big Segment Small Segment” global optimization method, in
conjunction with bounds tailored for each problem class. Computational experiments demon-
strate the effectiveness of our solution procedures. Solution times are very fast (often under one
second), making our approach a good candidate for embedding within existing heuristics that
solve multi-facility problems by solving a sequence of single-facility problems.

Key Words: Facility location; Network; Planar; On-network; Off-network; Optimal algorithm;
Emergency medical services.

1 Introduction

We consider a mixed planar and network location problem that optimally locates a single facility

anywhere on a network (e.g., beside a road) to serve both on-network and off-network demands.

1



Since heuristics for solving multiple-facility problems often rely on solving a sequence of single-

facility problems, having a fast method for solving the single-facility variant is very important, and

is the focus of our work. In our problem, we generate demands at two sets of points: one is located

anywhere in the plane, and another is restricted to a network embedded in the plane (i.e., its nodes

have planar (x, y) coordinates and links are straight lines connecting the nodes). We assume that

the network is connected, meaning that a path exists between any two nodes of the network. Some,

but not necessarily all, pairs of nodes are connected by links. The distance between a point on

the network and a point in the first (off-network) set of demand points is the Euclidean distance

between the two points, whereas the distance between any point on the network and a point in the

second (on-network) set of demand points is the shortest-path distance along the network. As is

customary in location problems such as the single facility Weber problem [36, 75, 76], its multiple

facility version [12, 13, 49] and the p-median problem [21, 22, 28, 47, 61], a weight is associated with

each demand point and the transportation cost of providing service from a facility to a demand

point is the weight multiplied by the distance between that point and the facility. In addition,

Euclidean travel is more expensive than traveling on the road network. Otherwise, there is no

reason to use network travel.

In addition to our base model, which locates a facility anywhere on the network so that the

total cost of serving both on-network and off-network demands is minimized, we explore several

model variants. These variants allow for such practical considerations as (i) switching to use costlier

Euclidean distances for reaching some on-network demand points when the facility is located far

away (threshold distance model), and (ii) producing robust solutions that ensure no demand point

receives disproportionately bad service (minimax model). In each case, we develop tailored bounds

that are used by our optimization procedure. Note that, in all cases, the facility should be located

on the network, otherwise service through links of the network is not possible.

A related problem is the vehicle routing allocation problem [3, 64, 72] where a tour is designed

on the network and off-network demand is serviced at a close point on the route.

To the best of our knowledge, this particular problem has not been investigated. A few papers

incorporate both distances along links of the network and off-network distances. Location on
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a network which consists of nodes and “mega-nodes” which are areas in the plane where demand

points in such areas travel through a discrete set of gates at the periphery of the area was considered

in [2]. The simultaneous location of a facility and a linear transit line was considered in [30, 31, 43].

A multiple-facility planar location problem in the presence of an alternative rapid transit system was

considered in [16]. They showed that for polyhedral distances the problem is reduced to finding

a p-median. A transportation network where customers residing off the network first travel off-

network to an on-network bus stop using the Manhattan distance was investigated in [46]. Finally,

similarities and differences between planar and network location problems were analyzed in [65, 66].

Our model has a number of applications; consequently, we review the literature in several rele-

vant application domains. Consider the decision of where to build a hospital, and the transportation-

related issues that must be taken into account. When a call for service is received, paramedics are

dispatched from the hospital either by ambulance or by helicopter, depending on the severity level

of the patient. Moreover, some calls may originate in remote areas where ground transportation

cannot reach the patient, and thus a helicopter must be dispatched. Our model captures this key

tradeoff between using helicopters or ground ambulances to transport patients to a hospital (gen-

erally speaking, helicopters travel faster than ground ambulances and can service patients over a

wider geographic area, but are more expensive to operate). In particular, the threshold distance

version of our problem, which we will present in Section 4.1, is directly applicable to emergency

settings since it checks how far away from the facility each on-network demand point is located and

switches to use the costlier off-network Euclidean distance metric when on-network distances are

not within the time standard.

The emergency systems planning literature includes both continuous and discrete location mod-

els. Continuous models such as ours allow the emergency facility (e.g., hospital) to be located at

any point in a continuous set (e.g., along a link of a road network). Continuous location is most

applicable early on in the decision-making process to identify a brand new site that has not yet been

built. Continuous emergency facility location models that maximize coverage within a service area

include [29, 50, 67]; however, these papers only consider a single mode of transportation to/from

the hospital. For additional reviews of emergency facility location the reader is referred to [54, 14].
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In contrast, discrete models are provided with a set of candidate (x, y) locations, and it is the

model’s job to select one or more locations from this discrete set of points. Within the discrete

location framework, Erdemir et al. [42] consider three coverage options: only ground coverage,

only air coverage, or joint coverage of ground and air in which the patient is transferred from an

ambulance to an emergency helicopter at a transfer point. They develop two model variants, the Set

Cover Backup Model (SCBM) which is an extension of the Location Set Covering Problem (LSCP)

of [70], and the Maximal Cover for a Given Budget Model (MCGBM) which is an extension of

the Maximal Covering Location Problem (MCLP) of [23]. Both model variants use discrete sets of

candidate locations for ground ambulances, helicopters, and transfer points. The resulting mixed-

integer programming formulations are hard to solve at scale, for which the authors develop an

efficient heuristic. A combination of hospital, ground ambulance, and helicopter location using a

discrete location model, but without helicopter to ground ambulance transfer points was considered

in [9]. To find good solutions, they use a mixed-integer linear program with an iterative switching

heuristic. More recently, Cho et al. [19] simultaneously located trauma centers and heliports using

a large-scale mixed-integer quadratic program, and observed a 10-15% increase in the number of

patients receiving care in a timely manner.

In another application, a distribution center (for example, FEDEX, UPS, the U.S. Postal Ser-

vice) needs to be established to serve a set of demand points [52]. Some demand points are served

by air, while some are served by truck or rail. High-priority packages must be transported by air,

while low-priority packages can be transported by truck or rail, which is cheaper. The existing

literature tends to model the package depot location problem as a discrete location problem, in

which a small number of depots are chosen from a candidate set and specific tours (e.g., one per

truck) are assigned to each depot. In such a context, the package depot location problem can be

viewed as a location routing problem, for which [64] provide a survey of the literature and relevant

models. Wasner and Zäpfel [74] is a representative example, in which the authors develop a large

mixed-integer program and related heuristic to solve a multi-depot hub-location routing problem

for a mid-sized Austrian parcel service. In contrast, our focus is on a continuous (location anywhere

on the network) model, which is most appropriate for deciding where to put a new depot when
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no candidate sites have been pre-selected by other means. Thus, our model contributes to the

literature on package depot location at the strategic level.

The use of aerial drones to deliver packages is a new and exciting technology [26, 63, 73]. At

present, no company is doing this, but both Amazon and Google have speculated that they may

start by 2017 (see [63] and various reports on the web). Consider two classes of consumers that

need an item urgently: those that drive to the store to pick the item up themselves (or pay for a

courier service to deliver the item to them), and those that request drone delivery. Shipments that

are time-critical (e.g., hot cooked food, medical supplies like vaccines or anti-venom for treating

snake bites, replacement parts for a broken machine) are most suited for this case. Although we

anticipate that the cost of a drone delivery, at the margin, may still exceed that of an on-road

delivery, our model trades off the cost of using network versus Euclidean distances, and can be

used to model this application regardless of how the future economics of drone delivery plays out.

Moreover, our model can easily be extended to the case where, at each demand location, there are

customers that are heterogeneous in their disutility (cost) of driving to a store to pick up their

order (simply co-locate a number of demand nodes with differing magnitudes of on-network costs,

and apply the model presented in this paper).

In yet another application, a military base (temporary or permanent) needs to be located. The

operations conducted from this base are performed either by air (planes, helicopters) or by ground

transportation depending on the operation. Some operations must be done by air and some must

be done on the ground. Once again, there are pros and cons of modeling military base location

as a discrete versus continuous location problem. The literature appears to be sparse in either

case. Three separate discrete location model variants to select aircraft alert sites for the defense of

important national areas of interest identified by the U.S. Department of Defense are discussed in

[4]. We could not find any continuous location examples in the context of military base location.

However, we expect that the continuous location modeling approach would be most appropriate

when the strategic decision of where to place the base must be completed well in advance of the

operational decisions that describe the specific missions (by ground or air) that will be run from the

base. In this context, the mass of each demand point in our model can be viewed as a probability of
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needing to run a mission in that vicinity, and the objective minimizes expected operational costs.

The paper is organized as follows. In Section 2 we formulate the base model, and in Section 3

we present algorithms for finding an optimal solution. In Section 4, we describe some important

extensions to our base model, as well as how bounds and solution approaches can be tailored

for these cases. Finally, we present computational experiments in Section 5 and conclude with a

discussion and suggestions for future research in Section 6.

2 Formulation

Demand is generated at two sets of points, with points in the set NN restricted to locations on

the network, and points in the set NE located anywhere in the plane. We wish to locate a facility

at a point X = (x, y) on the network, which may be at a node or anywhere along a link. We

denote the shortest-path distance from X to a demand point i ∈ NN as dNi (X), and the Euclidean

(straight-line) distance from X to a demand point i ∈ NE as dE
i
(X). So that we may express

distances in general terms, we also define the general distance di(X) between X and any demand

point i ∈ N = NN ∪ NE, such that di(X) = dEi (X) ∀i ∈ NE and di(X) = dNi (X) ∀i ∈ NN . We

use the weight wi to denote the population (mass) of demand point i, and define c as the ratio

between the transportation cost per unit of Euclidean distance and the transportation cost per

unit of network distance. In typical applications c > 1 because it is more expensive, on a per-unit

of distance basis, to travel from X to a demand point in NE , than to a demand point in NN (for

example, transporting a patient by helicopter is more expensive than by ground ambulance). The

objective function, which minimizes total cost by finding the best location X anywhere on the

network, is

F (X) =
∑

i∈N

widi(X) =
∑

i∈NN

wid
N
i (X) + c

∑

i∈NE

wid
E
i (X). (1)

It is sometimes convenient to decompose F (X) into two components: the total network and to-

tal Euclidean transportation costs, which we denote as FN (X) =
∑

i∈NN

wid
N
i (X) and FE(X) =

c
∑

i∈NE

wid
E
i
(X), respectively. This allows us to write (1) as F (X) = FN (X) + FE(X).

If NE = ∅, i.e., all demand points are on the network and only network distances are used, an
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optimal solution to (1) is on a node of the network [47, 48]. However, this may not be the case

when NE 6= ∅. Consider the example in Figure 1 of a network consisting of an equilateral triangle

with all sides of length of 1 and demand points located at its vertices as well as its center. The

vertices of the triangle are members of NN , while the demand point at the center of the triangle

is a member of NE . All demand points have a weight of 1 and some ratio c is used. The value of

the objective function at each node (vertex) is 2 +
√
3

3
c, and its value at the center of each side of

the triangle is 2.5 +
√
3

6
c. The value of the objective function at a center of a side is lower than its

value at a node when c >
√
3, which proves that for c >

√
3 the solution is not on a node. It can be

shown that the optimal solution is in the interior of a link for c > 2

3

√
3, but the more complicated

analysis is not necessary to illustrate our point.
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Figure 1: An example showing that the optimal solution may be in the interior of a link.

3 Solution Procedure

The optimal location of a facility placed anywhere on the network can be found by the “Big

Segment Small Segment” global optimization algorithm proposed by [6]. This is a branch-and-

bound procedure, and can be used to find the optimal solution to any given relative accuracy ǫ > 0.

The algorithm is as follows:
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The Big Segment Small Segment Algorithm

Step 1 (Initialization): Initialize a set of segments S, with one segment for each link in the

network. For each segment s ∈ S, calculate an upper bound (UB) and a lower bound (LB)

on the optimal value that can be achieved when the solution X is restricted to lying on the

segment s. Denote the smallest (tightest) UB as UB∗, and the segment on which this best

bound is achieved as s∗.

Step 2 (Pruning): Discard all segments for which LB ≥ UB∗(1− ǫ).

Step 3 (Termination Criterion): If no segments remain (S = ∅), terminate. The best solution

found has value UB∗ and is within the desired relative accuracy of ǫ from the global minimum.

Step 4 (Refinement / Branching): Otherwise, bisect the “big segment” s∗ at its midpoint into

two equally-sized “small-segments” s1 and s2. Update the list of segments by replacing the

big segment with the two new small segments: S ← S ∪{s1, s2}\{s∗}. Calculate LB and UB

for the two new segments, and update UB∗ and s∗ accordingly. Go to Step 2.

In order to implement the algorithm, we require upper and lower bounds for the optimal value

of (1) when X is restricted to a segment. Such an upper bound is easy to establish, since the value

of the objective function at any point along a segment is an upper bound. For each segment, it

is efficient to define its upper bound as the minimum value of the objective function evaluated at

its two endpoints. In Step 1 of the algorithm, the endpoints of each segment (link) are nodes of

the network. Once the values of the objective function at all nodes of the network are calculated,

evaluating the upper bound on a link requires only taking the minimum among two values. We

can also save for each segment the two values of the objective function at its endpoints, so that

in Step 4, when the big segment is divided into two small segments and the value of the objective

function needs to be computed at the center of the big segment, we already have available the

values of the objective function at the endpoints of the small segments.

To establish a lower bound on the optimal value of (1) when X is restricted to a segment,

we propose a bound based on DC-optimization (see for example, [8] and the references therein).
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The shortest-path distance from any point along a segment to a point on the network is a concave

function (see, for example, [6]), while the Euclidean distance from any point along a segment to a

point in the plane is a convex function. Therefore, FN (X) is concave while FE(X) is convex, and

F (X) = FN (X)+FE(X) is neither. However, if we replace each convex Euclidean distance function

dEi (X) in FE(X) = c
∑

i∈NE

wid
E
i (X) with a suitable concave underestimate, we can produce a

modified objective which is a concave lower bound for F (X). Using the fact that a concave function

evaluated over a segment obtains its minimum at an endpoint, for any X that lies on a particular

segment we then use as a lower bound the minimum value of this modified objective evaluated

at the segment’s two endpoints. It remains to discuss how to construct concave underestimates

for FE(X). A simple concave underestimate for FE(X) can be produced by, for each segment

s, pre-computing the point Xs at which FE(X) is minimized and has value vs, and then taking

{vs if X is on segment s} as our underestimate for FE(X). Since this expression is a constant

when restricted to each segment, it is concave on each segment. Although intuitive to specify, this

particular underestimate for FE(X) is expensive to produce, since an optimization problem must

be solved for each segment s as a pre-processing step. Instead, we suggest underestimating each

dEi (X) with its tangent line taken at any point along the segment, say at its center. Then, (a) since

dE
i
(X) is convex its tangent line is a valid lower bound, and (b) the tangents are all linear, and thus

concave. Therefore, the modified function (1) following the substitution of Euclidean distances to

points in NE by their tangent lines is a suitable concave underestimating function, as required.

3.1 Implementation

Consider a link connecting a “left” node L = (xL, yL) and a “right” node R = (xR, yR) of length ℓ.

A point X(θ) on the link is defined by θ ∈ [0, 1] as follows:

X(θ) = (x(θ), y(θ)) = ((1 − θ)xL + θxR, (1 − θ)yL + θyR). (2)

The point X(θ) is at distance θℓ from the left node and (1− θ)ℓ from the right node. The distance

between X(θ) and a demand point Xi at some node i ∈ NN of the network is calculated as follows.

Let dL, dR be the distances between Xi and the left and right nodes, respectively. These distances

are calculated along the shortest path between Xi and the two nodes. The distances between
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Xi and all the nodes of the network can be calculated in the preamble of the algorithm and are

available. The distance between Xi and X(θ) is

dNi (X(θ)) = min {dL + θℓ, dR + (1− θ)ℓ} for i ∈ NN . (3)

This distance is a concave function of θ, since it is a minimum of two linear functions.

The distance between X(θ) and Xi = (xi, yi) for i ∈ NE is calculated directly as the Euclidean

distance between the two points, i.e.,

dEi (X(θ)) =
√

((1− θ)xL + θxR − xi)
2 + ((1− θ)yL + θyR − yi)

2 for i ∈ NE. (4)

The tangent line Ti(θ) to the Euclidean distance at a point X(θ0) is

Ti(θ) = dEi (X(θ0)) +
∂dEi (X(θ))

∂θ

∣

∣

∣

∣

∣

θ=θ0

(θ − θ0), (5)

where

∂dEi (X(θ))

∂θ

∣

∣

∣

∣

∣

θ=θ0

=
(xL − xi)(xR − xL) + (yL − yi)(yR − yL) + θ0

[

(xR − xL)
2 + (yR − yL)

2
]

dE
i
(X(θ0))

.

By the convexity of Euclidean distance, Ti(θ) ≤ dEi (X(θ)). A segment in our algorithm is either

a link or part of a link, and is defined by 0 ≤ θ1 < θ2 ≤ 1. The tangent line is calculated at the

center of the segment θ0 =
θ1+θ2

2
. The lower bound for a point X(θ) along the segment θ ∈ [θ1, θ2]

is

LB = min







∑

i∈NN

wid
N
i (X(θ1)) + c

∑

i∈NE

wiTi(θ1),
∑

i∈NN

wid
N
i (X(θ2)) + c

∑

i∈NE

wiTi(θ2)







, (6)

and the upper bound for a point X(θ) along the segment θ ∈ [θ1, θ2] is

UB = min







∑

i∈NN

wid
N
i (X(θ1)) + c

∑

i∈NE

wid
E
i (X(θ1)),

∑

i∈NN

wid
N
i (X(θ2)) + c

∑

i∈NE

wid
E
i (X(θ2))







.

(7)

As we can see, only six sums are required to calculate both LB and UB for a segment.

4 Extensions

The following are extensions of the base model presented in Section 2.

10



4.1 The Threshold Distance Problem

We assume that Euclidean distances are more expensive (c > 1), otherwise there is no point in

considering the option of using network distances at all. This is the case in many practical examples

since air transportation is often more costly than ground transportation. Suppose that beyond a

threshold distance (usually time converted to distance), even a point in NN should get its service

using the more expensive Euclidean distance. For example, in many applications there is a time

standard of service that must be maintained. This may mean that patients must be transported to

a hospital within some established time threshold, or packages must be delivered before a fixed due

date. Depending on the facility location X = (x, y), a demand node i could be near X or far from

X, making it difficult to a priori classify nodes as needing the fast, expensive (Euclidean) mode of

transport. In this section, we describe how our model can be extended to handle the case where

some demand nodes i ∈ NN get faster, more expensive service by using Euclidean distances rather

than on-network distances whenever X is located beyond a given threshold distance from i.

For this model extension, the upper bounds are straightforward while the lower bounds become

more complex. As before, the upper bound on a segment is easily established using any point along

the segment (e.g., the minimum value of the objective function at the two endpoints). The upper

bound is easy to calculate since the value of the objective function at a given location remains easy

to calculate. We know the distances to all demand points, and we can simply check which demand

points exceed the threshold distance. In contrast, we modify the lower bound as follows. For each

segment of length s, we compute the distances di(L) and di(R) to the left (L) and right (R) ends

of the segment. Since network distance is a concave function, the lowest possible distance is the

minimum of these two distances. The maximum distance between demand point i and any point

in the segment is [6, 60]:

dmax(i) =
1

2
[di(L) + di(R) + s]. (8)

When both the minimum and maximum distances are either smaller or larger than the threshold

distance, the same mode of service (network or Euclidean) is used for the service of that demand

point. When the threshold distance is between the minimum and the maximum distances, the

cheaper mode of service (network distance) is assumed for that demand point yielding a lower

11



bound. When the segment is small, it is expected that very few demand points, if any, will fall in

this category and therefore the quality of the lower bound is mostly maintained.

Note that when a point in NN is served using Euclidean distance, the weight wi should be

multiplied by c to reflect the higher cost of Euclidean distance service.

4.2 The Minimax Objective

In many emergency facility location problems, minimizing the maximum distance (minimax) objec-

tive is employed [41, 58, 40], which provides the best possible service to the farthest demand point.

To model the minimax objective in our framework, we first separate the objective function into two

components, which measure the maximum network and Euclidean distances from the facility X to

any demand point i:

FN (X) = max
i∈NN

{

dNi (X)
}

; FE(X) = max
i∈NE

{

dEi (X)
}

. (9)

Two weights, fN and fE, are given. The minimax objective can be formulated as minimizing

max {fNFN (X), fEFE(X)} . (10)

It is not immediately clear how to calibrate the two parameters fN and fE . It is possible that

at the solution point of one objective, FN (X) or FE(X), the value of the objective function for

the other function is lower if the weights are not calibrated properly. The only “interesting” case

is when such situations do not occur. We prefer to have constant fN and fE values rather than

generating the efficient frontier of the two objectives, which does not result in a unique location

solution.

We propose an objective similar to the concept of minimax regret which was proposed in location

models such as [1, 27, 35]. Let X∗
N

and X∗
E
be the locations on the network that minimize FN (X)

and FE(X) with optimal values F ∗
N

and F ∗
E
, respectively. When a common location to the two

objectives is sought, we cannot minimize both objectives simultaneously (unless X∗
N

= X∗
E
, which

is very unlikely). We propose a compromise objective where the maximum percentage increase in

the values of the objective functions is minimized:

min
X

{

max

{

FN (X)

F ∗
N

,
FE(X)

F ∗
E

}}

. (11)
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This means selecting fN = 1

F ∗

N

and fE = 1

F ∗

E

.

Note that by selecting these weights, the solution is a compromise solution between the two

objectives unless X∗
N

= X∗
E
.

4.2.1 Solving the Minimax Problem

To solve the minimax problem (11), we carry out the following steps:

1. Solve a location problem using only network distances and demand points i ∈ NN to produce

the minimax solution X∗
N

with optimal value F ∗
N
.

2. Solve a location problem using only Euclidean distances and demand points i ∈ NE to produce

the minimax solution X∗
E
with optimal value F ∗

E
.

3. Compute fN = 1

F ∗

N

and fE = 1

F ∗

E

.

4. Solve a location problem with both network and Euclidean distances for all demand points

i ∈ NN ∪NE using the objective function defined by (10). Return this solution.

Finding F ∗
N
, F ∗

E
and solving the location problem with minimax objective (10) can be done by

the Big Segment Small Segment algorithm in a similar fashion to the approach used for solving the

minisum problem. The value of the objective function at any point in the segment or the minimum

value at the two ends of the segment are upper bounds. We define the lower bounds for FN (X),

FE(X), and (10) below.

Lower bound for FN (X): Since network distances are concave, a lower bound for each distance

is obtained by evaluating the distances to each of the endpoints of the segment and selecting

the smaller one. The maximum of these lower bounds is a lower bound for the maximum

distance to any point of the segment and thus is a lower bound to FN (X) in the segment.

Lower bound for FE(X): Consider a link of length ℓ with distances to demand point i from its

two endpoints of D1 ≤ D2 depicted in Figure 2. By the Cosine Theorem, cosα =
D2

1
+ℓ2−D2

2

2ℓD1
.
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Also, x = D1 cosα. It can be shown that di as defined below is the shortest distance from

demand point i ∈ NE to all the points in the segment:

di =
√

D2
1 − x2 where x = max

{

D2
1 + ℓ2 −D2

2

2ℓ
, 0

}

. (12)

The lower bound on the segment is therefore max
i
{di}.

Lower bound for (10): For a given segment, we first compute the lower bounds LBN and LBE

of the functions FN (X) and FE(X) respectively, as described above. Then, the value of

max {fNLBN , fELBE} is a lower bound for the minimax objective (10) on the segment.

�
�
�
�
�
�
��@

@
@
@
@
@
@@

D1 D2

ℓ− xx

di

i

α

Figure 2: The shortest distance to a segment.

4.2.2 Alternative Approaches

As discussed in the computational experiments section, solving these problems by the Big Segment

Small Segment algorithm is very efficient. Regardless, there may be more efficient ways to find F ∗
N

and F ∗
E
. For completeness, we discuss such approaches here.

The minimax problem on the network is well known and can be solved by the algorithm proposed

by [58].

Solving the Euclidean minimax problem anywhere in the plane is equivalent to finding the

smallest circle that encloses all demand points and is one of the oldest location problems [68, 69].

Chrystal [20] proposed a solution method for this problem later refined by [51]. As reported by

[32], the most effective algorithm is the one proposed by [41] whose average complexity is about

linear. Drezner and Shelah [38] constructed a contrived example with complexity of O(n2) where
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n is the number of demand points. Megiddo [55] suggested an algorithm to solve this problem in

linear time. To the best of our knowledge, no one has previously investigated the problem of finding

the best location anywhere on the network that minimizes the maximum Euclidean distance to a

set of points in the plane.

The objective function on a link is convex as it is a maximum of two convex functions. Therefore,

a local minimum on a link is the global minimum on that link. The minimum value of the objective

function on a link can be found by the golden section search (see, for example, [77]). The proposed

algorithm consists of the following steps:

1. Find the lower bound on each link max
i
{di} where di is found by (12).

2. Sort the links in increasing order of the lower bound.

3. Consider the links sequentially according to the order found in Step 2.

4. Find the minimum value of the objective function on the link by the golden section search.

5. Once the lower bound of the next link is not lower than the lowest value of the objective

function found so far, stop. The best solution found is the optimal solution on the network.

Note that rather than sorting the vector of lower bounds, the more efficient binary heap [15,

45, 57] can be used.

4.3 Other Extensions

The base model, its threshold extension and the minimax objective can be extended to conditional

problems. In this context, one or more facilities already exist in the area and we wish to add a new

facility. Each customer should receive service from their closest facility, whether existing or new.

See [5, 7, 17, 18, 59].

Let Di be the shortest distance between demand point i and the existing facilities. Di is a

constant independent of X which can be easily pre-computed. We replace the distance di(X) by

min{di(X),Di}. For example, to model and solve the base model, we employ the limited distance
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idea suggested by [37]. Problem (1) is converted to minimizing

Fcond(X) =
∑

i∈N

wimin {di(X),Di} . (13)

Note that for demand points using Euclidean distances wi is multiplied by c.

The value of the objective at a given facility location is calculated by (13). Therefore, the upper

bound is easily established as the value of the objective function at any point on the segment, for

which we use the minimum value from the segment’s two endpoints. In order to establish a lower

bound, we first replace for every i ∈ NE the Euclidean distance with its tangent plane. The distance

di(X) and its tangent plane Ti(X) are both concave and since Di is a constant, the minimum of

a concave function and a constant is concave. Consequently, the minimum value of the converted

function at the endpoints of the segment is a lower bound.

5 Computational Experiments

Programs were compiled by an Intel 11.1 Fortran Compiler with no parallel processing using double

precision arithmetic and run on a desktop with an Intel 870/i7 2.93GHz CPU Quad processor and

8GB RAM. Only one thread was used.

5.1 Experiments With the Base Problem With and Without a Threshold

For our first batch of test instances, we generated demand points (both NN and NE) uniformly at

random from a unit square, linking some nodes in NN as follows. Starting from a network with

no links at all, we add six links for each demand point (node) i ∈ NN such that the links we add

directly connect i with its six closest neighbor nodes (as measured by Euclidean distance). Each

link we add is assigned a length equal to the Euclidean distance between the two nodes it connects.

Many of the links are selected twice. This happens when two points are close to one another such

that each node is among the six closest nodes to the other one. Such duplication is eliminated by

deleting one of the links. In all cases we found the networks we generated were connected. When

we generated only five links for each node, there was one case where the network was not connected.
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We used a cost ratio (between Euclidean and network distances) of c = 5 and applied equal weight

to all demand points.

In all experiments we generated an equal number of demand points in NN and NE for a total of

n demand points. This is done to avoid excessively large tables that do not enhance the assessment

of the procedures. We used a relative accuracy of ǫ = 10−10 in the Big Segment Small Segment

algorithm, and solved each set 10 times. For threshold distance instances, a threshold distance of

0.5 was used.

Figure 3: Square and Ring Instances

Points in a Square Points in a Ring

s network nodes; c off-network points; × base problem optimal solution.

Since the solution to instances where nodes are generated uniformly in a square tends to be in

the center of the square, we also generated a second batch of instances to verify the robustness of

our algorithm. For these instances, off-network demand points were generated in a disc of radius

1, and on-network demand points were generated in a ring along the outside edge of the disc. The

ring shares the same center as the disc, and has an inner radius of 0.9 and an outer radius of 1.

By construction, the road network is in the ring and thus the optimal solution must lie in the ring.
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This distribution of demand is realistic when there is an area where ambulances cannot reach like

a lake, a mountain, or a forest surrounded by demand points and a road system. Distress calls can

come from either the ring (where ambulances can be used) or the interior disc where service can

only be provided using Euclidean distances. The solution to such a problem can be anywhere on

the network and, unlike our first batch of instances, the value of the objective function is flat with

many local optima. Finally, for these instances we constructed the network by connecting each

node to its closest ten points rather than the closest six points as in our first batch of instances.

This is because using only six closest points caused many instances to have disconnected networks.

Consequently, the number of network links in our second batch of instances is larger than in our

first batch of instances. Figure 3 provides an example from both batches of instances (generated

uniformly in a unit square, and in/around a disc).

In Table 1 we report the results for our two data sets. For each data set, we first report for each

n the characteristics of the instances: averages for the number of links, and the time in seconds

required to generate the matrix of network distances using Floyd’s shortest path algorithm [44]. We

then report for the no-threshold and threshold cases the averages of: the number of iterations, max

number of segments during Step 4 of the Big Segment Small Segment algorithm following the initial

pruning of links, and run time in seconds per instance for the full application of the algorithm. The

full application of the algorithm includes: (i) finding the value of the objective function at each

network node to establish an upper bound, (ii) scanning all links and calculating a lower bound for

each one to establish the initial set of segments (those links whose lower bound is smaller than the

upper bound) for the branch-and-bound phase, and (iii) running the branch-and-bound phase until

all segments are pruned. The variability of the reported values for the first data set is so small that

there is no need to report other characteristics such as maximum run times. For example, the time

for solving the largest problem in a square with threshold ranged between 1.29 and 1.36 seconds

with an average of 1.32 seconds.

It is interesting that our second more “difficult” data set did not require much more compu-

tational effort. Actually, the increase in run time is mainly due to the increase in the number of

links. The base problem was solved equally well but there were a few exceptions in the threshold
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Table 1: Average performance of the algorithm

No Threshold Having a Threshold
n # Links † Itera- Max Time Itera- Max Time

-tions Seg. (sec.) -tions Seg. (sec.)

Nodes in a Square

100 183 0.00 172 21 0.00 332 39 0.00
200 360 0.01 193 12 0.00 347 46 0.00
300 541 0.01 192 16 0.00 1,268 101 0.01
400 715 0.02 180 13 0.00 333 43 0.01
500 888 0.04 197 14 0.01 350 41 0.01
600 1,071 0.09 198 14 0.02 358 53 0.02
700 1,240 0.15 196 10 0.01 384 52 0.02
800 1,426 0.31 188 15 0.02 327 51 0.03
900 1,598 0.59 201 14 0.03 327 48 0.04
1,000 1,783 0.98 178 13 0.03 290 50 0.04
2,000 3,547 11.73 179 13 0.15 471 76 0.18
3,000 5,326 43.87 186 12 0.36 373 75 0.43
4,000 7,086 109.73 168 14 0.67 521 87 0.82
5,000 8,854 219.15 175 12 1.04 506 109 1.32

Nodes in a Ring

100 278 0.00 318 65 0.00 5,540 1,045 0.05
200 565 0.00 234 35 0.00 4,098 736 0.05
300 842 0.01 197 26 0.01 14,286 2,589 0.25
400 1131 0.02 235 19 0.00 215 34 0.01
500 1409 0.03 234 18 0.01 119 33 0.02
600 1693 0.07 250 19 0.02 6,142 1,078 0.18
700 1983 0.13 243 15 0.03 95 25 0.04
800 2269 0.29 241 16 0.03 262 40 0.05
900 2561 0.58 207 15 0.04 170 29 0.06
1,000 2864 0.96 209 17 0.05 255 40 0.07
2,000 5896 11.71 197 12 0.24 109 34 0.28
3,000 8824 43.83 201 14 0.56 1,763 336 0.85
4,000 11,670 109.46 207 12 1.04 108 35 1.23
5,000 14,609 218.68 193 12 1.61 54 22 1.96

† Time in seconds for calculating network distances by computing shortest paths.

problems. When there are many near-optimal solutions, it is more common to encounter many

iterations. The most difficult case was one of the n = 300 problems that required 113,058 iterations

with a maximum of 20,624 segments and was solved in 2.07 seconds, which is still very fast.
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The algorithm is very fast and efficient. It is interesting that the vast majority of the time was

spent finding the shortest path distances between pairs of nodes (which has a complexity of O(n3))

and only a very small portion of the run time was spent on the algorithms. The pre-processing

to compute the all-pairs shortest paths distances only needs to be computed once, even when our

algorithm would be run repeatedly by a multi-facility metaheuristic. Consequently, the run times

that exclude pre-processing are more relevant when considering the use of our method within the

context of such a multi-facility metaheuristic. The largest tested problem of n = 5, 000 demand

points was solved by the Big Segment Small Segment algorithm in only 1.04 seconds without a

threshold and 1.32 seconds with it for the first data set that has 8,854 links, and in 1.61 seconds

without a threshold and 1.96 seconds with it for the second data set that has 14,609 links. Indeed,

the efficiency of our method makes it a good candidate to use as part of broader heuristics that

solve multiple-facility location problems by solving a sequence of single-facility problems.

5.2 Experiments With Minimax Problems

All three components of the solution process (finding F ∗
N
, F ∗

E
, and solving (10)) were performed

using the Big Segment Small Segment algorithm. Since run times are so short, there is no reason

to test more specifically-tailored algorithms for finding F ∗
N

and F ∗
E

in an attempt to shorten the

run time. Moreover, due to the similarity in the run times we previously observed for our first and

second batches of instances, for this section we only report run times for our first batch of instances.

The algorithms are very efficient. The largest problem was solved in an average time of 1.12

seconds.

6 Discussion and Suggestions for Future Research

We analyzed and solved the problem of locating a facility anywhere on a network when demand is

generated at two sets of points: one is located anywhere in the plane, and another is restricted to

a network embedded in the plane. Service distance to demand points at nodes is the shortest path

distance through links of the network, while service distance to demand points located anywhere

in the plane is the more expensive per unit distance and is measured by the Euclidean norm. The
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Table 2: Average performance of the minimax algorithms

Finding F ∗
N

Finding F ∗
E

Solving (10) Objec- Total
n Itera- Max Time Itera- Max Time Itera- Max Time -tive Time

-tions Seg. (sec.) -tions Seg. (sec.) -tions Seg. (sec.) Value (sec.)

100 95 9 0.00 285 32 0.00 37 10 0.00 1.05650 0.00
200 79 8 0.00 194 22 0.00 18 8 0.00 1.03954 0.00
300 114 7 0.00 217 24 0.00 23 8 0.00 1.02365 0.00
400 92 7 0.00 263 28 0.00 26 9 0.01 1.03001 0.01
500 98 8 0.00 247 26 0.01 25 10 0.00 1.03146 0.01
600 117 8 0.00 223 25 0.00 24 11 0.01 1.01363 0.01
700 90 5 0.00 201 20 0.01 26 10 0.01 1.02346 0.02
800 97 9 0.00 214 23 0.01 18 7 0.01 1.01581 0.03
900 95 7 0.01 242 23 0.01 16 7 0.02 1.01184 0.03
1,000 108 8 0.01 225 23 0.02 22 10 0.02 1.01703 0.04
2,000 100 8 0.06 224 24 0.05 28 10 0.06 1.01155 0.17
3,000 89 6 0.12 215 23 0.11 25 10 0.15 1.00573 0.38
4,000 107 8 0.24 218 23 0.20 23 9 0.28 1.00670 0.71
5,000 84 8 0.37 180 21 0.30 28 11 0.45 1.00850 1.12

base model involves the minimization of the total weighted distance to all demand points. Two

extensions to the base model were analyzed and solved: (i) the threshold distance model where if

the network distance exceeds a given threshold, then service is always provided using Euclidean

distance, and (ii) a minimax version of the base model. The problems are solved by the Big

Segment Small Segment global optimization method [6]. Computational experiments demonstrate

the effectiveness of the solution procedures. Problems with 5,000 demand points were solved in

a little over one second of computer time, which illustrates the effectiveness of the approaches.

It verifies the usefulness of the “Big Segment Small Segment” procedure for locating a facility

anywhere on the network. No other paper investigated this particular problem so it is difficult to

compare run times with existing results.

6.1 Suggestions for Future Research

Optimal algorithms for solving multiple-location versions of our problems are not expected to be

efficient when there are a large number of facilities because these problems are NP-hard. The
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planar p-median Euclidean distance problem, which is a special case of our problem, is known to

be NP-hard [56]. For small values of p, such as p = 2, the Big Segment Small Segment algorithm

can be executed in a nested approach as suggested in [6].

For larger values of p, heuristic approaches can be implemented. Many heuristic approaches that

were implemented for solving the planar p-median Euclidean distance problem (for recent reviews,

consult [10, 11, 33, 34]) are based on optimally solving a sequence of single-facility problems and

can be applied to the mixed planar and network problem. The alternating procedure by [24, 25] is

a location-allocation procedure that proceeds as follows. A starting solution is randomly generated

and demand points are assigned to their closest facility. Next, p single-facility problems are solved

and a new allocation of demand points to facilities is produced. This process alternates between

solving p independent single-facility problems and allocating demand to facilities until the solution

stabilizes. This alternating procedure was improved by [33] replacing the single-facility solution

procedure by the conditional single-facility solution procedure described in Section 4.3. Overall,

multi-facility heuristics that employ single-facility solutions can be applied in a multi-start fashion,

and are practical because of the very fast single-facility optimal procedure presented in this paper.

Many metaheuristic procedures such as local search, tabu search and simulated annealing [62],

variable neighborhood search [12], and genetic algorithms [33] have been applied to the planar

p-median Euclidean distance problem, and make use of optimal single-facility solutions. We expect

that such metaheuristics applied to the mixed planar and network problem would work well, and

leave comprehensive testing of such approaches for future work.

Second, we also may consider an extension to the base problem presented in this paper that

has a fixed budget. In that case, some on-network demands could be provided by the faster and

more expensive Euclidean distance service as long as the budget is not exceeded.

Third, we may also be interested in relaxing the requirement that the optimal solution be on

the network. This may be useful in cases where new roads could be built to connect an off-network

location to an existing road network. We expect the Big Triangle Small Triangle technique [39]

could be employed here, in conjunction with similar bounds to the ones we have derived in this

paper.
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Finally, it would be of interest to extend the location-routing problem [53, 71] to incorporate

both on-network and off-network distances similar to the model suggested by [63].
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