Title
The Obsidian Blade Sequence at El Ujuxte, a Late Preclassic Site on the South Coast of Guatemala

Permalink
https://escholarship.org/uc/item/07b4j2zh

Authors
C. Roger Nance
Jan de Leeuw

Publication Date
2011-10-25
The Obsidian Blade Sequence at El Ujuxte, a Late Preclassic Site on the South Coast of Guatemala

C. Roger Nance and Jan de Leeuw

(Abstract)

Systematic data on ca.1200 blades from this site were summarized in terms of three ceramic phases (defined by Love 2002) for the same site. That is, we assigned blades to phases based on the ceramic content of each provenience. Regular phase-by-phase decreases occurred in blade dimensions, weights, and length:width ratios. We predicted these results based on earlier findings from the site of La Blanca (Nance and Kirk 1991). The trend appears also within the latest Pitahaya phase, even at the level of the excavation unit. Blade densities decrease through Pitahaya deposits as well, and the blade sequence is discussed in terms of an increased scarcity of obsidian or obsidian blades traded to the region.

Introduction

In earlier research at the Middle Preclassic site of La Blanca on the Guatemalan South Coast and now at the nearby Middle to Late Preclassic site of El Ujuxte (Fig. 1) we have documented a gradual decrease in prismatic blade size through time. Much of the real cost of blades to these people would have been in transporting blade-quality obsidian from the Guatemalan Highlands (See Tabares et al. n.d.on El Ujuxte obsidian sources). Gradually learning to cope with smaller blade tool bits might have lowered the cost per blade to El Ujuxte importers. Human porters could have transported more small blades per load, more small cores vs. larger ones, etc. So, one possible explanation for the decrease in blade size at these sites is
increased efficiency on the part of consumers. If, however, smaller blade size was dictated by suppliers in either the Highlands or elsewhere on the South Coast and not recipients at El Ujuxte, then we might be looking at the problem of interrupted trade and obsidian blade scarcity.

While there are many difficulties surrounding the study of blades, the technique used here was to create a computerized data set, a matrix in which each data line contained information on an individual blade and each column, information on a variable describing the blades or their provenience in the site. Variables systematically recorded have to do with blade morphology, aspects of edge wear, edge alteration and blade size. For the purposes of this research, the term blade refers either to a complete prismatic blade or a blade section, created when a blade is snapped across its longitudinal axis. Blade fragments without complete cross sections were excluded from the data set.

It is important to state at the outset that this is not a study in the technology of blade production. The authors never examined all the obsidian from El Ujuxte, but were sent ca.. 3700 catalogued specimens of blades and possible blades chosen by laboratory personnel. From these, we selected 1260 blades meeting the above criteria.

In earlier research, Nance and Kirk (1991) proposed a sequence of changing obsidian blade complexes for the Middle Preclassic site of La Blanca on the South Coast of Guatemala. That study was based on samples of blades from four different portions of the site ceramic sequence. Michael Love (2002a) excavated La Blanca and also defined the ceramic sequence there.

We found that through time, obsidian blades from La Blanca gradually decreased in size in terms of decreasing lengths, widths, and thicknesses, as well as weights. Blade proportions
changed, with length to width ratios becoming progressively smaller. Edge wear increased on blade lateral edges through the sequence, and blade resharpening became more common, as evidenced by increased bipolar modification, which served to renew lateral blade edges. All of this suggested an increasing scarcity of obsidian for the inhabitants of La Blanca.

As for La Blanca, the El Ujuxte obsidian study followed that for ceramics, and ceramic phase designations were used to determine relative chronological positions for obsidian samples (collected by excavation unit and 10 cm level). Also consistent with the La Blanca research, all pieces of obsidian were collected systematically by screening deposits through 1/8-inch hardware cloth.

Michael Love also excavated El Ujuxte and recently described the site ceramic sequence, dividing it into three phases. These fall into the later portion of the Middle Preclassic (Caramelo phase) and the Late Preclassic (Cataluña and Pitahaya phases). Altogether, occupation at El Ujuxte spans the period of ca. 540 B.C. to sometime after 100 A.D. (Love 2002b).

Phase by Phase Trends at El Ujuxte

Once El Ujuxte blades had been assigned to these phases, we could see that blade sample size varied widely among the three phases. Of 1,260 blades in the study, only 10 are from the earliest Caramelo phase, and 37 from the Cataluña phase. This leaves the preponderance of blades, 1,213, or 96.3%, in the latest Pitahaya phase.

Not withstanding this skewed distribution of blades across the three phases, there are consistent trends in the data of Figures 2-5. In all four bar charts, mean dimensions and weights decrease regularly through time from phase to phase, with changes in lengths and weights being
more pronounced than those in widths and thicknesses.

Are differences among the phases for these four size variables collectively significant? While t tests could be used to test significance for each pair of means, the problem with separate t tests is that results are presented as independent outcomes, while clearly they are not. So if we find weight to be different and length to be different, we are really presenting the same result twice if length and weight are highly correlated. To explain the chi-square test employed, we have to remember two things. First, the chi-square distribution with p degrees of freedom is the distribution of the sum of squares of p standard normal variables. Second, the central limit theorem, which says that under very general conditions averages (means) are approximately normally distributed. We apply this in the following way. Figures 2-5 show means, one set of means for each phase. These means will be approximately normally distributed, which means that the difference between the rows will be approximately normal as well. To compute the chi-square, we cannot simply take the sum of squares of the differences between rows, because columns (variables) are not independent. Length, weight, and so on are (pretty strongly) correlated. We use the actual correlations to weight the sum of squares of four correlated normal random variables in such a way that it becomes approximately the sum of squares of four independent normals, i.e., it becomes approximately chi-square distributed. Testing the hypothesis that the rows of means are equal, and taking the correlation of variables into account, between Pitahaya and Cataluna, the chi-square is 7.61 with p<.04, between Cataluna and Caramelo, the chi-square is 5.74 with p<.08, and between the latest Pitahaya phase and the earliest Caramelo phase, the chi-square is 16.03, significant at p<.001.

Another way of approaching the same problem is with a discriminant analysis (Fig. 6).
Here, we make a weighted sum of the four variables in such a way that (a) the weighted sum has variance one, and (b) the means of the three groups (phases) are as far apart as possible. Thus we maximize the between group variance relative to the total variance. It turns out that the weighted sum (linear combination) we make accounts for 95% of the between group variance, i.e., there is effectively only one dimension (size) in which the three groups differ. Figure 6 shows the distribution of blades in terms of this new “size” variable for the three phases, with “smallness” represented by positive values to the right and “largeness” by negative values to the left. One can see an increasing shift from large blades in the earliest group (3, or, Caramelo) to small blades in group 1 of the latest Pitahaya phase.

Also, mean length to width ratios decrease regularly as well (Fig. 7). In sum, blades gradually become both smaller and squarer through time. Given the earlier research at La Blanca, these regular trends of both decreasing blade size and changing proportions had been hypothesized. And so, we find a parallel trend and statistical support for the idea that there is some tendency on the South Coast during Preclassic times for blades to gradually become smaller and squarer through the sequence.

Trends within the Pitahaya Phase

If this were a pervasive trend, then it seemed predictable that similar shifts would be found not just from phase to phase, but also continuing through El Ujuxte deposits of the latest Pitahaya phase, which produced 96% of all blades in the study.

We focused, then, on a large Pitahaya sub set of 1,196 blades. These came from 12 excavation units with deep deposits, averaging ca. 3.0 meters per 2 x 2 meter square, and we
TABLE 1
Blade Width by Depth, Pitahaya Phase

<table>
<thead>
<tr>
<th>Depth (10 cm level)</th>
<th>W<14.68 mm</th>
<th>W>14.68 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levels 1 - 20</td>
<td>312</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>51.7%</td>
<td>50.5%</td>
</tr>
<tr>
<td>Levels 21 +</td>
<td>292</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>48.3%</td>
<td>49.5%</td>
</tr>
<tr>
<td></td>
<td>604</td>
<td>592</td>
</tr>
</tbody>
</table>

Chi-Square = 0.16 Probability Level = 0.69

TABLE 2
Blade Length by Depth, Pitahaya Phase

<table>
<thead>
<tr>
<th>Depth (10 cm level)</th>
<th>L<26.86 mm</th>
<th>L>26.86 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levels 1 - 20</td>
<td>385</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>55.2%</td>
<td>45.4%</td>
</tr>
<tr>
<td>Levels 21 +</td>
<td>313</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>44.8%</td>
<td>54.6%</td>
</tr>
<tr>
<td></td>
<td>698</td>
<td>498</td>
</tr>
</tbody>
</table>

Chi-Square = 11.12 Probability Level = 0.0009

divided the levels arbitrarily into those above and below 2.0 meters. This produced two large, roughly equal samples of blades, 611 above 2.0 meters (levels 1-20), and 585 below. Much larger Pitahaya samples allowed direct use of the chi-square test, so for dimensions, weights, and length:width ratios, we used means to divide the blades into large and small fractions. Along with cross-cutting sampling from upper and lower deposits, this resulted in two-way, four-cell tables.
Blade thicknesses and widths (Table 1) vary little by macro-level when viewed in this way. However, lengths decrease significantly from lower to upper Pitahaya deposits (Table 2), as do weights and length:width ratios. These trends parallel findings described earlier among the three El Ujuxte phases.

Correspondence Analysis: Distribution of Samples

Although these trends are significant statistically, they are a bit suspect, since blades can sometimes occur concentrated in large quantities. Several large deposits of blades representing different tasks could produce an apparent sequence with little if anything to do with gradual cultural change. There is reason, then, to search for evidence of a pervasive trend within individual excavation units that produced Pitahaya material. This was accomplished through a statistical technique known as correspondence analysis (Greenacre and Blasius 1994). Archaeologists occasionally have employed correspondence analysis in their research (e.g., Bølviken et al. 1982; Clouse 1999); the authors (Nance et al. 2003) recently utilized this technique in a study of ceramics from Iximché.

Working with the same large Pitahaya sub-set, we made a summary data set with information on 31 samples of blades, each sample coming from a group of contiguous 10-cm levels of a single excavation unit. The idea was to maximize sample size and still preserve evidence of stratigraphic change. The average sample contained data on 36 blades and represented between 11 and 12 levels of an individual unit. This summary data set contained information not only on dimensions and weights, but also on edge wear, blade modification and other variables, including blade proportions relative to available debitage, which we had also
summarized. It did not, however, contain information on provenience, that is, level and unit
designations were not incorporated.

In a correspondence analysis, distances among samples are computed using chi-square
statistics. One can imagine three samples and three chi-square tests contrasting each sample to
the other two. For a study of, say, five variables, each test would involve a ten-cell contingency
table. The results for three samples could be represented on a two-dimensional grid. Sample
loci close together on the grid would resemble one another in variable frequency proportions,
since the distance between them would represent a small chi-square value. With many samples,
the procedure is the same, except that it is impossible to conceptualize visually the multiplicity of
relationships. The correspondence analysis statistic, however, reduces all of the chi-square
distances among all the samples onto a two-dimensional grid in what can be considered a best
possible fit.

The same analysis also computes chi-square distances among the variables. In the
example above, for three samples and five variables, we would generate 11 chi-square tests,
each, for a 6 cell contingency table, contrasting the frequencies for two variables as distributed
within three samples. Both sample and variable loci can be depicted on the same plot (or joint
plot). Variable loci situated near each other have similar distributions among the samples, and
variable loci are situated near samples where they are highly represented.

In the study at hand, we generated a single correspondence analysis for 31 samples and
16 variables (represented by 46 constituent attributes), so the resulting joint plot contains 77
labeled points or loci. In order to see the results with some clarity, however, only selected loci
are depicted in three figures (Figs. 8, 9 and 11), all taken from the same analysis
Figure 8 shows all 31 samples projected on a two-dimensional plot. Also in Figure 8, samples from nine of the individual units are shown connected with a line, the arrow pointing from the upper to the lower sample. There is, then, based on stratigraphic evidence, a time line running through the chart from upper right to lower left. And, this trend is evident for 9 of the 12 squares represented in the analysis. In short, there is evidence of a blade sequence running through the 200 years of Pitahaya occupation.

Correspondence Analysis: Distribution of Variables

Figure 9 depicts sample loci for only excavation Unit 17/2, the three samples isolated in the upper left-hand corner of Figure 8. The three samples for this unit do not line up chronologically, that is, diagonally across the plot, as do those for the nine units shown in Figure 8. Also included in Figure 9 are loci for four of the 16 variables which figured in the analysis. These have to do with size: length, width, thickness and weight. The constituent attributes of each variable are plotted and each of these summarizes frequencies of blades with above and below average measurements for the size variable in question. In other words, on the chart, each size variable is represented by two attributes. It so happens that for all four variables, the attribute locus having the higher Y value on the chart represents the smaller size attribute and the lower, the larger. For example, the width variable is summarized through two attributes, below average width and above average width. The attribute, above average width, is represented by an X below the y = -.5 grid line in Figure 9. The locus for below average width is represented by an X above the y = .5 grid line.

These data in Figure 9 allow us to examine the other perspective of Pitahaya blade
distributions: horizontal rather than vertical, and synchronic rather than diachronic. Can we

TABLE 3

Outlier vs. Other Samples by Mean Length
Correspondence Analysis Samples, Pitahaya Phase

<table>
<thead>
<tr>
<th>Length Outlier Samples</th>
<th>Other Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>L#26.86 mm</td>
<td>519</td>
</tr>
<tr>
<td>128</td>
<td>647</td>
</tr>
<tr>
<td>71.1%</td>
<td>55.4%</td>
</tr>
<tr>
<td>L>26.86 mm</td>
<td>418</td>
</tr>
<tr>
<td>52</td>
<td>470</td>
</tr>
<tr>
<td>28.9%</td>
<td>44.6%</td>
</tr>
<tr>
<td>180</td>
<td>937</td>
</tr>
<tr>
<td></td>
<td>1117</td>
</tr>
</tbody>
</table>

Chi-Square = 15.31 Probability Level = .00009

TABLE 4

Outlier vs. Other Samples by Mean Width
Correspondence Analysis Samples, Pitahaya Phase

<table>
<thead>
<tr>
<th>Width Outlier Samples</th>
<th>Other Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>W#14.68 mm</td>
<td>419</td>
</tr>
<tr>
<td>137</td>
<td>556</td>
</tr>
<tr>
<td>76.1%</td>
<td>44.7%</td>
</tr>
<tr>
<td>W>14.68 mm</td>
<td>518</td>
</tr>
<tr>
<td>43</td>
<td>561</td>
</tr>
<tr>
<td>23.9%</td>
<td>55.3%</td>
</tr>
<tr>
<td>180</td>
<td>937</td>
</tr>
<tr>
<td></td>
<td>1117</td>
</tr>
</tbody>
</table>

Chi-Square = 59.53 Probability Level = .00000

discern sub-assemblages which might reflect differing patterns of blade use across the site?

Given that the positions of the three sample loci of Unit 17/2 are in close proximity to all four
below average size attributes (Fig. 9), we would anticipate that the 180 blades from these
samples, combined, would be quite small compared to blades from the 28 other Pitihaya samples. And, this turns out to be the case. Not only are lengths (Table 3) and weights less for these “outlier” samples, but also, widths (Table 4) and thicknesses, and these differences are highly significant. We do not seem to be dealing here simply with a late portion of the sequence; for example, length:width ratios vary little when comparing these two groups of samples. The excavation unit in question was situated in a level area near the bases of two mounds (Mounds 36 and 38), possibly where trash was dumped or accumulated (Love, pers. comm.). For some reason, those working at this locality required and obtained delicate blades produced from small cores.

It can be seen (Fig. 9) that the weight-dimension attributes cluster in four pairs: weight+ (i.e., above average) and length+; weight- and length-; thick+ and width+; and, thick- and width-. In other words, blade length covaries closely with weight among the samples, and blade width with thickness. In Figure 8, the nine line segments, each representing a different excavation unit, all have positive slopes, and such would be the case for a line segment approximately connecting the pairs weight+,length+ to weight-, length-. This positive diagonal represents time to some extent, and we know that blade lengths (Table 2) and weights become smaller through the Pitahaya period. In contradistinction, a line segment connecting thick+,width+ to thick-width- would have a negative slope and there is no clear evidence that blade width (Table 1) or thickness changes appreciably through Pitahaya levels. Of course, one can see two general clusters as well, small blade dimensions and weights on the one hand and large dimensions and weights on the other, separated along the Y axis. As discussed above for inter-phase differences, all size variables tend to covary. However, based on available Pitahaya evidence, it seems that
lengths and weights have more to do with time, and widths and thickness, more with functional variability across the site. Table 5 summarizes, by Pitahaya sample, lengths (in millimeters) and weights (in grams) for the nine excavation units with aligned samples in Figure 8. In terms of these dimensions, average blade size generally decreases within these units from lower to upper samples. At the same time, standard deviations in Table 5 are large indicating size diversity within samples; sample size in most cases is small. Due to the problem of sampling error, this trend does not show up well within individual units on a level-by-level basis. For example Pearson’s correlation coefficients comparing blade lengths and level assignments for each unit (Table 5) are only statistically significant (P<.05) for three of the four excavation units producing at least 50 Pitahaya blades and for none of the other units represented in the table.

TABLE 5

Blade Weights and Lengths

for Selected Pitahaya Samples

<table>
<thead>
<tr>
<th>Unit</th>
<th>Sample</th>
<th>Freq.</th>
<th>Wt., 0</th>
<th>Wt., SD</th>
<th>Len., 0</th>
<th>Len., SD</th>
<th>R (P) (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/1</td>
<td>upper</td>
<td>13</td>
<td>1.78</td>
<td>1.22</td>
<td>26.11</td>
<td>9.42</td>
<td>.167 (.425)</td>
</tr>
<tr>
<td>7/1</td>
<td>lower</td>
<td>12</td>
<td>2.87</td>
<td>2.11</td>
<td>31.93</td>
<td>16.85</td>
<td></td>
</tr>
<tr>
<td>10/6</td>
<td>upper</td>
<td>17</td>
<td>.84</td>
<td>.46</td>
<td>16.91</td>
<td>7.33</td>
<td>.022 (.901)</td>
</tr>
<tr>
<td>10/6</td>
<td>lower</td>
<td>16</td>
<td>.97</td>
<td>.82</td>
<td>16.76</td>
<td>9.31</td>
<td></td>
</tr>
<tr>
<td>11/1</td>
<td>upper</td>
<td>26</td>
<td>2.63</td>
<td>1.39</td>
<td>28.92</td>
<td>11.72</td>
<td>.339 (.015)</td>
</tr>
<tr>
<td>Unit</td>
<td>Position</td>
<td>Blade Size</td>
<td>Wear</td>
<td>Width</td>
<td>Length</td>
<td>Correlation Coefficient</td>
<td>P Value</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>------------</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>-------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>11/1</td>
<td>lower</td>
<td>25</td>
<td>3.77</td>
<td>2.20</td>
<td>35.00</td>
<td>12.53</td>
<td></td>
</tr>
<tr>
<td>14/1</td>
<td>upper</td>
<td>11</td>
<td>1.73</td>
<td>1.13</td>
<td>24.40</td>
<td>10.73</td>
<td>.131 (.562)</td>
</tr>
<tr>
<td>14/1</td>
<td>lower</td>
<td>11</td>
<td>2.82</td>
<td>2.09</td>
<td>29.70</td>
<td>15.41</td>
<td></td>
</tr>
<tr>
<td>18/1</td>
<td>upper</td>
<td>42</td>
<td>1.45</td>
<td>1.03</td>
<td>21.98</td>
<td>8.49</td>
<td>.281 (.010)</td>
</tr>
<tr>
<td>18/1</td>
<td>lower</td>
<td>41</td>
<td>2.28</td>
<td>1.79</td>
<td>28.86</td>
<td>12.31</td>
<td></td>
</tr>
<tr>
<td>18/2</td>
<td>upper</td>
<td>40</td>
<td>2.01</td>
<td>1.55</td>
<td>26.01</td>
<td>10.65</td>
<td>.257 (.005)</td>
</tr>
<tr>
<td>18/2</td>
<td>middle</td>
<td>36</td>
<td>2.73</td>
<td>1.95</td>
<td>31.75</td>
<td>16.12</td>
<td></td>
</tr>
<tr>
<td>18/2</td>
<td>lower</td>
<td>41</td>
<td>2.88</td>
<td>1.93</td>
<td>32.42</td>
<td>13.00</td>
<td></td>
</tr>
<tr>
<td>19/1</td>
<td>upper</td>
<td>26</td>
<td>1.79</td>
<td>1.61</td>
<td>25.52</td>
<td>12.24</td>
<td>.226 (.111)</td>
</tr>
<tr>
<td>19/1</td>
<td>lower</td>
<td>25</td>
<td>3.41</td>
<td>2.74</td>
<td>33.50</td>
<td>16.11</td>
<td></td>
</tr>
<tr>
<td>19/2</td>
<td>upper</td>
<td>20</td>
<td>1.84</td>
<td>1.44</td>
<td>27.63</td>
<td>14.99</td>
<td>.068 (.676)</td>
</tr>
<tr>
<td>19/2</td>
<td>lower</td>
<td>20</td>
<td>2.29</td>
<td>1.47</td>
<td>29.61</td>
<td>11.87</td>
<td></td>
</tr>
<tr>
<td>20/1</td>
<td>upper</td>
<td>19</td>
<td>1.61</td>
<td>1.90</td>
<td>21.77</td>
<td>12.56</td>
<td>-.027 (.874)</td>
</tr>
<tr>
<td>20/1</td>
<td>lower</td>
<td>17</td>
<td>1.62</td>
<td>.98</td>
<td>22.70</td>
<td>6.21</td>
<td></td>
</tr>
</tbody>
</table>

(1) This column contains correlation coefficients and P values for the variables, level and blade length; e.g., for Unit 7/1, R=.167, P=.425.)

Use Wear and Blade Size

Other variable loci in the correspondence analysis figure in this research. Not yet considered is the idea that decreasing blade size through time might have been due to increased
modification (retouch) or edge wear. For example, it is certainly plausible that if the incidence of bipolar flaking had increased, that this could have caused blade size generally to diminish. However, bipolarly flaked blades, while common enough in the collection (Fig. 10E-H), did not increase through the Pitahaya sequence. Proportions of these modified blades actually decrease slightly from 5.5% of blades below Level 20 to 4.1% in levels 20 and above. In terms of dimensions and within the same Pitahaya sample, bipolarly flaked blades are significantly below average in width, but significantly above average in thickness. It seems likely that thin blades would not have stood up to the percussion-flaking of the bipolar technique.

Figure 11 shows variable loci in the same correspondence analysis having to do with deliberate edge modification: on blade ends (e.g., burins; Fig. 10I-J); through bipolar flaking; and on lateral edges (Fig. 10K). One other variable included in Figure 11 summarizes edge alteration interpreted to be the result of use, in this case wear on blade ends (e.g., drill bits, Fig 10L-N). These four variables are each expressed in terms of two attributes, one summarizing frequencies of blades with vs. one for those without one of these forms of (interpreted) deliberate modification or incidental edge use-wear. Figure 11 shows that attribute loci for these variables where evidence for wear or modification was absent (indicated by a minus sign) cluster together in the upper left corner of the chart and are situated near the small blade size attributes (cf., Figs. 9 and 11). The positive attribute loci for these same variables are located below and to the right. The correspondence analysis, then, does not suggest a tendency for blades of small size and those manifesting one or more of these forms of edge alteration to cluster on a sample by sample basis, or, likewise, that these attributes tend to be represented together on the same blades.

As interpreted here, the most pervasive form of edge wear from use on El Ujuxte blades
consists of very fine pressure flaking along blade lateral edges (Fig. 10A-D). We found that
blades manifesting this form of use wear, instead of being diminished in size, are actually
significantly larger in all dimensions compared to those lacking this lateral edge alteration.
Altogether, blades showing marked lateral edge use, tend to be large and seem better suited for

Also, this general form of lateral edge wear does not become more pronounced on blades
above level 21 of the Pitahaya sample. Actually, there is a slight though statistically insignificant
tendency for pronounced edge wear to occur on Pitahaya blades more frequently in lower levels.

In sum, there is no clear evidence that diminished blade size in upper Pitahaya levels was
due either to more intensive use or to an increase in deliberate modification.

Discussion

Blade densities fall-off significantly in the upper levels of Pitahaya deposits (Fig. 12).
While this could be due to a late increase in building activity, viewed in conjunction with
decreasing blade sizes, the finding is noteworthy and could suggest a declining blade industry at
El Ujuxte. Also, blades changed in terms of their shape, becoming more square-like, as they
decayed in overall size. Cores producing the blades might have become shorter, since blade midsection to
end-section proportions changed little (Fig. 13). Apparently, blade length did not decrease
because blades were being snapped into more and shorter sections. Altogether, then, the picture
suggested is one of both fewer and smaller blades being manufactured at El Ujuxte and/or
arriving there during the later stages of the Pitahaya occupation. The more squared shape of the
later blade sections might have functioned to maintain the strength of these smaller tool bits and
to prevent their shattering during use.

While the fall-off in blade density through the deposits as well as decreasing blade size both indicate an increasing scarcity of blades at El Ujuxte, this deprivation might have been felt unevenly across the prehistoric community. In one of the field reports, Love et al. (n.d.) identified a structure at El Ujuxte (Mound 46) as possibly an elite residence. Love excavated two units there, and blades from those pits (18/1, 18/2) are included in this research. Looking at level-to-level trends in these two units, blades do become smaller through time (significantly so, as measured through the correlation coefficient; see Table 5), but when elite blades are contrasted to those from other Pitahaya samples, those from this potentially elite locality are larger in all size variables, most significantly in terms of weight (Table 6).

<table>
<thead>
<tr>
<th>Weight</th>
<th>Elite Samples</th>
<th>Other Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt#2.01 gm</td>
<td>107</td>
<td>604</td>
</tr>
<tr>
<td>53.5%</td>
<td>65.9%</td>
<td></td>
</tr>
<tr>
<td>Wt>2.02 gm</td>
<td>93</td>
<td>313</td>
</tr>
<tr>
<td>46.5%</td>
<td>34.1%</td>
<td></td>
</tr>
</tbody>
</table>

Chi-Square = 10.85 Probability Level = .00099

Robert Santley (1989: 143) studied obsidian from Matacapan and surrounding sites in the Tuxtla Mountains of Vera Cruz. He reported that obsidian blades “from the center of Matacapan exhibit less utilization than blades from outlying areas of lower status occupation indicating that
elites were more affluent consumers of obsidian”. He was suggesting that given their abundant supply, elites discarded blades before they became highly worn. This correspondence, however, might not hold for some prehistoric Mesoamerican communities, where there was an overall scarcity of blades. At El Ujuxte for the same Pitahaya samples under discussion, we found significantly more edge wear on blades from the potentially elite context, not less.

In both the El Ujuxte and La Blanca studies, we classified and recorded lateral edge wear, using low-power microscopy and following Hay (1978), in terms of three categories: (1), wear minor to absent, often manifested as discontinuous edge nicking; (2), moderate, definite wear in the form of minute, contiguous pressure flake scars, at times forming a bevel surface running parallel to the edge but less than 2 mm wide; and (3), heavy edge wear with bevel surfaces equal to or wider than 2 mm. In Table 7, blades are represented by composite scores which include data for both lateral edges (i.e., we added attribute codes together for each blade). A minimum score, then, would be 2 and a maximum, 6. Only blades with both edges classified in the 1-3 range are included. (leaving out the relatively few blades with other forms of lateral edge wear, e.g., ground edges). As can be seen, a high proportion of elite blades have scores of 5 or 6, while blades from contexts not identified as elite tend more to fall in the category for the lowest composite score. It would appear that elites, with larger blades at their disposal, were able to employ these tools for a fuller range of activities, including forceful use of tools bits. If their supplies of blades were more abundant, dulling tool edges in the performance of these tasks might have been less a matter of concern than for others with more restricted access.
TABLE 7

Elite vs. Other Samples by Composite Lateral Edge Ware Scores

Correspondence Analysis Samples, Pitahaya Phase

<table>
<thead>
<tr>
<th>Composite Lateral Edge Score</th>
<th>Status</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elite</td>
<td>60</td>
<td>52</td>
<td>63</td>
<td>21</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>30.6%</td>
<td>26.5%</td>
<td>32.1%</td>
<td>10.7%</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>355</td>
<td>192</td>
<td>288</td>
<td>55</td>
<td>890</td>
</tr>
<tr>
<td></td>
<td>39.9%</td>
<td>21.6%</td>
<td>32.4%</td>
<td>6.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>415</td>
<td>244</td>
<td>351</td>
<td>76</td>
<td>1086</td>
</tr>
</tbody>
</table>

Chi-Square = 10.095 Probability Level = .0178

Extra-Site Comparisons

Detailed comparisons of La Blanca and El Ujuxte data do not reveal a regular sequence from large to small blades, when samples from the two sites are interdigitated chronologically. However, there are size decreases at each site. This lack of consistency may be due to small sample sizes and sampling error, or possibly to local histories which may or may not be individual expressions of a regional trend. Clark (1988: 46) reported for the Middle Preclassic site of La Libertad in the central depression of Chiapas a trend, “away from a specialized blade industry towards an industry of expediency”. At all three sites, then, during Late or Middle Preclassic times, we see evidence of a deteriorating blade industry.

Another area of comparability has to do with access to blades by people of high rank vs. commoners. Clark (1987: 280-281), in an assessment of excavated Middle Preclassic sites in
highland Chiapas, saw blades as status markers in those communities, with most blades belonging
to high-status individuals. Also, investigators working in Vera Cruz have found high
concentrations of obsidian or obsidian blades in site centers or ceremonial or elite contexts
(Santley 1989: 143; Barrett 2003: 216; Knight 1999: 176-179). Certainly, these observations are
compatible with our findings for the Late Preclassic at El Ujuxte. As indicated above, the
possibly elite residence, Mound 46, produced larger blades than other contexts.

In the Introduction, we noted that diminished blade size can be viewed as either a positive
or negative development for prehistoric populations. In Europe, blade size appears to decrease
regularly through the Upper Paleolithic (Owen 1988: 157-158), presumably resulting in the
microliths of Mesolithic and Neolithic times. While this could represent a world-wide trend
toward smaller, lighter, more efficient tools, we can ask why it shows up so clearly through just
200 years of Maya prehistory.

Kosakowsky et al. (1999) identified extensive trade in Fine Red pottery from the coastal
plain of Southeast Guatemala into adjacent Highlands and suggest a contrasting “flow of
obsidian” from the Highlands in exchange. In their interpretation, this “exchange of finished
products . . . becomes institutionalized in the Classic period”, trade which had “become
formalized by well established trading relations now dating back to the Late Preclassic”
(Kosakowsky et al.1999: 388). Our own research with obsidian from two sites on the northwest
South Coast of Guatemala and that of Clark (1988) at La Libertad in Chiapas suggest more
tenuous trade in Highland Guatemalan obsidian to surrounding regions during the Middle to Late
Preclassic.
Conclusions: Relevance to Mesoamerican Archaeology

As Hirth and Andrews (2002: 1) note in their introduction to the book, Pathways to Prismatic Blades, in recent decades, Mesoamerican researchers have taken a technological approach to the study of lithic artifacts and have tended not to deal with the morphology or function of finished stone tools. This approach has yielded valuable results, but it does not preclude the efficacy of studying the finished product. Also, it is not so much that this is a comprehensive development in Mesoamerican lithic archaeology, but that recent research has by and large focused on obsidian prismatic blade industries. For sites where lithic assemblages are not dominated by prismatic blades and debris from their manufacture and use, both for Mesoamerica and elsewhere in North America, lithic studies routinely involve consideration of both technology of production and the morphology and function of finished tools. The difference here seems to lie in the importance of classification to the research enterprise. Hirth and Andrews (2002: 1) write that, “the lithic technology approach . . . provides a useful heuristic framework for classifying lithic artifacts . . .”. Generally, archaeologists involved with prismatic blade industries classify various forms of debitage from core and blade manufacture, the cores themselves, and the resultant blades. Yet, the preponderance of finished tools, the prismatic blades, are rarely if ever broken down into subcategories with demonstrable analytic value, except those based on parent material. This suggests that finished prismatic blades have not been susceptible to classification. To some extent, this may explain the heavy emphasis on the technology of blade production in recent Mesoamerican research. For non-blade assemblages, of course, finished stone tools tend to classify into known types of projectile points and other chipped- and ground-stone tool forms.
As perceived here, the problem of classifying blades can be avoided through a multi-variate approach, and prismatic blades can then be studied as one of several research components, including production technology, in the overall assessment of a site's obsidian assemblage. For the sites of La Blanca and El Ujuxte, this extra-blade research remains incomplete, and as a result, important questions remain unanswered. Debitage and other non-blade obsidian from El Ujuxte should be examined to ascertain if blades were manufactured there. Tabares et al. (n.d.) mention, apart from blades, the presence at El Ujuxte of obsidian “flakes and casual tools”. Did these artifacts also decline in density through the Pitahaya deposits along with blades? Another possibility is that they became more important relative to blades in later years of the Pitahaya occupation, paralleling Clark’s (1988) findings at El Libertad. Finally, it is possible that some shift in production technology at El Ujuxte or elsewhere to some extent accounts for the diminution of blade size. This question can and should be explored as well.

Yet, if our research at these two sites is incomplete, is this not also the case elsewhere, where thousands of blades have been simply subsumed within one or several categories without further discussion? One should keep in mind that each of these blades, for the most part, is a complete tool bit, and that the research potential for these thousands of artifacts must be considerable. At least, this is suggested by our research at La Blanca and El Ujuxte.

We found that blades in Mesoamerica can change in measurable and statistically significant ways, and that this can occur within surprisingly limited time frames (e.g., over the 200 year period of the Pitahaya phase).

That these trends appeared consistently through most of the excavation units studied contributes to an understanding of the depositional history of the site. Our data support the idea
that Pitahaya deposits built up gradually and generally did not result from a one-time, massive construction project.

Our research underscores the fact that technological issues surrounding blades do not end with their production. Artisans routinely modified blades to create specialized tool bits and recycled them as edges became worn. The size and shape of tool bits, their modification, and the degree and nature of edge wear relate not only to function, but evidently to the availability of obsidian.

This study also points to the potential role of blade research in the study of intra-site settlement patterns. For El Ujuxte, this is a work in progress for Love and his collaborators. Some unique cultural context might be found for the concentration of small blades in the vicinity of Mounds 36 and 38 and the overall pattern might be found replicated on other areas of the site. The definition of sociopolitical boundaries at El Ujuxte might be enhanced through further blade studies, if elite habitations are consistently found to be marked by high proportions of large blades.

Finally, our research indicates that one can study not only trade routes and sources of raw material through trace element analysis, but that through the study of blades as well as other obsidian tools and debitage, the potential exists to study both the development and decline of this trade as well.
Bibliography

Barrett, T. P.

Bølviken, E., E. Helskog, K. Helskog, I. M. Holm-Olsen, L. Solheim, and B. Bertelsen

Clark, J. E.

Clouse, R. A.

Greenacre, M. and J. Blasius, eds.

1994 *Correspondence Analysis in the Social Sciences*. Academic Press, San Diego, California.

Hay, C. A.

Hirth, K. and B. Andrews, eds.

Kosakowsky, L. J., F. E. Belli and H. Neff

Knight, C. L. F.

Love, M. W.

Love, M W., D. Castillo and B. Balcárcel

Nance, C. R. and K. A. Kirk

Nance, C. R., S. L. Whittington and B. E. Borg

Owen, L. R.

Santley, R. S.

Tabares, N., M. W. Love, M. D. Glascock, H. Neff, and J. Speakman

n.d. Straight from the Source: Obsidian Prismatic Blades at El Ujuxte, Guatemala. Unpublished manuscript on file at the Department of Anthropology, California State University, Northridge.
Mean Length by Phase

Figure 2
Mean Width by Phase

Figure 3
Mean Thickness by Phase

![Bar chart showing mean thickness by phase: Caramelo has the highest thickness at approximately 4.3 mm, followed by Cataluna at about 4.0 mm, and Pitahaya with the lowest at around 3.5 mm.](image)

Figure 4
Mean Weight by Phase

![Bar chart showing mean weight by phase for Caramelo, Cataluna, and Pitahaya.](Figure 5)
Figure 6
Mean Length:Width Ratio by Phase

Figure 7

Ratio

Caramelo Cataluna Pitahaya
Correspondence Analysis, Sample Loci

Figure 8
Correspondence Analysis, Variable Loci

Figure 9
Other CA Variable Loci

Figure 11
Figure 12
Blade Morphology % by Level

![Bar chart showing blade morphology by level](image)

Figure 13