Lawrence Berkeley National Laboratory
Recent Work

Title
RADIATIVE AND NONRADIATIVE BOSON DECAY INTO LEPTONS

Permalink
https://escholarship.org/uc/item/07m6r2c4

Authors
Bludman, Sidney A.
Ruderman, Malvin A.

Publication Date
1955-11-16
Radiation Laboratory

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
RADIATIVE AND NONRADIATIVE BOSON DECAY INTO LEPTONS

Sidney A. Bludman and Malvin A. Ruderman

Radiation Laboratory and Physics Department,
University of California, Berkeley, California

November 16, 1955

The decay $K_\mu^2 \rightarrow \mu + \nu$, which is the commonest K-meson decay, is strikingly similar to $\pi^\pm \rightarrow \mu + \nu$. A simple phase-space estimate gives a $K-\mu$ lifetime less than one-tenth the $\pi^- - \mu$ lifetime, while the observed lifetimes are more nearly equal. In this note, we wish to point out that the long K_μ^2 lifetime and the absence of K_{e2} are both understandable in terms of the same interaction (axial vector) as has been invoked\(^1\) to explain the absence of $\pi^- - e$ decay. Since this interaction is one that suppresses the emission of fast electrons, it had been expected\(^2\) that radiative decays like $\pi^- \rightarrow e + \nu + \gamma$ might be relatively important. That this is not so, however, can be shown in a simple way by a generalized equivalence theorem.

Since \mathcal{T}_5 merely inverts neutrino spins, and in the final state neutrino spins are summed over, the decay of a scalar meson by scalar (vector) coupling is identical with the decay of a pseudoscalar meson by pseudoscalar (pseudovector) coupling. The essential feature of derivative coupling is that the matrix element squared is proportional to $1 - v/c = (m/M + m)^2$, where v and m are the electron or muon velocity and mass, and M is the pion or K-meson mass. The transition rate is

$$
\tau^{-1} = g^2 (m^2 - m'^2)^2 / 2M^3 (m/M)^2 ,
$$

(1)

where g is the effective boson-lepton coupling constant. The pseudovector interaction for the pion decay was motivated by the small ratio 1.3×10^{-4} that this equation gives for the pion decaying into $e + \nu$ rather than $\gamma + \nu$.
From Eq. (1) the ratio of $K-e$ to $K-\mu$ decay is

$$\frac{\gamma_{Ke_2}^{-1}}{\gamma_{K\mu_2}^{-1}} = 2.5 \times 10^{-5}.$$

(2)

When the coupling constant in Eq. (1) is adjusted to the observed lifetime,

$$\gamma_{K\mu} = (0.70) \gamma_{\mu\lambda} = 1.8 \times 10^{-8} \text{ sec.}$$

(3)

No K_{e_2} has in fact been reported, and the lifetime in Eq. (3) is in good agreement with the observed value.³

The derivative coupling suppresses the transition rate so long as

$$1 - v/c = 1 + \left(\frac{\Delta \langle E / E_0 \rangle}{E_0 / E_0}\right) \approx 0,$$

a relation which is altered by photon emission. If radiative transitions were to be somewhat enhanced relative to nonradiative decays, K_{e_3} and K_{μ_3}, which appear to be a few percent of K_{e_2}, might be interpretable (at least in part) as radiative decays. That this is not the case, but rather that the radiative decay is of order $\alpha / \gamma = 0.2\%$ of the nonradiative decay follows immediately from an equivalence theorem relating (pseudo)scalar and (pseudo)vector interactions.

For $e = 0$, the matrix element of Eq. (4) is that for the nonradiative decay; if terms are kept linear in e, the matrix elements of Eq. (4) are those of the
radiative decay. For both the radiative and the nonradiative decay, on
derivative coupling, the matrix element for electron emission is \(\frac{m_e}{m} \)
times the matrix element for muon emission. The ratio of radiative and
nonradiative decay rates of spin-zero mesons is the same on derivative and
on direct coupling.

In all four cases \(S(S), P(P), S(V), P(A) \), the probability of
radiative decay with the emission of muons or electrons of momentum \(p \) in
the energy interval \(dE \) is

\[
P(E)dE = (\alpha/\gamma)(M^2/M^2 - m^2) \left\{ \frac{4}{M^2 + m^2 - 2ME} \left[E \ln \left(\frac{E + p}{E - p} \right) - 2p \right] \right. \\
\left. \frac{M^2 + m^2 - 2ME}{M(M^2 - m^2)} \ln \left(\frac{M(E + p) - m^2}{M(E - p) - m^2} \right) \right\} dE .
\]

It is interesting to observe that for all four couplings the spectrum
obtained is essentially that expected from classical radiation damping.

We would like to thank S. Gasiorowicz, C. J. Goebel, and W. K. B.
Watson for helpful discussion. This work was supported in part by the
REFERENCES

3. We are grateful to S. Yamaguchi for pointing out that a similar calculation has been done by Ogawa, Okonagi, and Oneda, Prog. Theor. Phys. 11, 330L (1954). They calculate, however, a K_{12} lifetime shorter by an order of magnitude, apparently by a numerical error.

4. In Reference 2 the emission of photons by virtual nucleon pairs was unjustifiably discounted. Their inclusion gives agreement with the above result. Simultaneously with the preparation of this letter, one of us received a preprint from Treiman and Wyld who, as part of a more extensive calculation, find this same result for the unimportance of radiative decay with pseudovector coupling. We are grateful to Drs. Treiman and Wyld for informing us of their results.