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INCORPORATING MODEL UNCERTAINTY INTO
SPATIAL PREDICTIONS

MARK S. HANDCOCK DEPARTMENT OF STATISTICS & OPERATIONS

RESEARCH, NEW YORK UNIVERSITY, LEONARD N. STERN SCHOOL OF

BUSINESS, NEW YORK, NY 10012. ∗

Abstract. We consider a modeling approach for spatially distributed data. We
are concerned with aspects of statistical inference for Gaussian random fields when the
ultimate objective is to predict the value of the random field at unobserved locations.
However the exact statistical model is seldom known before hand and is usually estimated
from the very same data relative to which the predictions are made. Our objective is
to assess the effect of the fact that the model is estimated, rather than known, on the
prediction and the associated prediction uncertainty. We describe a method for achieving
this objective. We, in essence, consider the best linear unbiased prediction procedure
based on the model within a Bayesian framework.

These ideas are implemented for the spring temperature over the region in the north-
ern United States based on the stations in the United States historical climatological
network reported in Karl, Williams, Quinlan & Boden (1990).

Key words. Gaussian random fields; Bayesian statistics; Climatic change.

1. Introduction. We develop spatial-temporal models for the spring
temperature over a region in the northern United States covering eastern
Montana through the Dakotas (90◦ − 107◦ in longitude) and northern Ne-
braska up to the Canadian border (41◦ − 49◦ in latitude). The empirical
work of Lettenmaier, Wood and Wallis (1992) suggests that the tempera-
tures over the spring period might exhibit a temporal pattern not found in
the winter months. In addition the relatively stable and simple topography
of the region help to ensure homogeneity and the minimization of localized
effects.

The traditional best linear unbiased prediction procedure (“Kriging”)
is used in this paper for inference, but within a Bayesian framework. Par-
ticular attention is paid to the treatment of parameters in the covariance
structure and their effect on the quality of the prediction. Our approach
is to exam how posterior predictive distributions of areal quantities change
over time. The objective is to see if there have been changes in areal tem-
perature that are discernible from the year-to-year variation.

A companion study reported in Handcock & Wallis (1992) considered
the winter months and this region because GCM predictions of climatic
change (4◦F − 10◦F ) induced by increased greenhouse gases are expected
to be at maximum for high latitudes during the winter months (Mitchell
(1989), IPCC (1990)). However there was no indication that the areal mean
temperature for this time of the year in this region has changed over the
last half century. There the posterior predictive distributions were used

∗This paper has benefited greatly from the guidance and suggestions of Michael Stein.
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2 MARK S. HANDCOCK

as a basis for calibrating temperature shifts by the historical record. In
particular, the objective was to understand how soon gradual increases in
temperature over this region would be discernible from the year-to-year
variation. A similar analysis could be undertaken for the spring season
considered here.

There has been much interest recently in climatic change and poten-
tial global warming. Of central focus is the phenomenon popularly called
the “greenhouse effect”: the heating of the earth via the entrapment, by
certain gases, of long-wave radiation emitted from the earth’s surface. This
effect produces a global mean temperature of about 59◦F rather than an
estimated −6◦F in the absence of atmosphere (Mitchell (1989)). Increas-
ing concentrations of the gases thought to contribute to this effect have led
to concern in the scientific community about increases in temperature and
the resulting climatic effects.

There appears to be no clear cut consensus on the extent of global
warming over the last century. Most estimates run from 0.5◦F to 1.0◦F.
The difficulty is the lack of good long-term data over large regions. The
global temperature constantly changes on time scales of tens of thousands
of years. In fact there have been times in the past millennium when it has
been much warmer than the majority of global warming scenarios. The
question here is over a rapid change over the next century that will have
enormous impact on the environment.

Much of the evidence for a global warming effect has been based on
large-scale Global Circulation Models (GCMs). These use multi-level math-
ematical representations of the atmosphere for weather prediction. Given
the complexity of the environment and the relative simplicity of the models
there is much controversy concerning their validity. Results from the four
most widely cited GCMs (1) the National Center for Atmospheric Research
(NCAR), (2) Geophysical Fluid Dynamics Laboratory (GFDL) of the Na-
tional Oceanographic and Atmospheric Administration, (3) the Goddard
Institute of Space Studies (GISS) and, (4) the Hadley Center for Climate
Prediction and Research at Bracknell, England, are still far from being in
agreement, although all models predict higher winter temperatures at the
higher northern altitudes as a function of increasing greenhouse gases.

The modeling framework is developed in Section 2. The application of
the model to the spring temperature field is considered in Section 3. The
areal mean spring temperature is modelled in Section 4.

2. Methodology. Suppose Z(x) is a real-valued stationary Gaussian
random field on R with mean

E{Z(x)} = f ′(x)β,

where f(x) =
{
f1(x), . . . , fq(x)

}′ is a known vector-valued function and β
is a vector of unknown regression coefficients. Furthermore, the covariance
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function is represented by

cov
{
Z(x), Z(y)

}
= αKθ(x, y) for x, y ∈ R

where α > 0 is a scale parameter, θ ∈ Θ is a p × 1 vector of structural
parameters and Θ is an open set in IRp. In the general case, we observe
{Z(x1), . . . , Z(xn)}′ = Z and will focus on the prediction of Z(x0). In our
application x1, . . . , xn are the spatial locations of the stations in the net-
work. We will focus on the prediction of Z(x0), where x0 is a new location
in the region of interest. The Kriging predictor is the best linear unbiased
predictor of the form Ẑθ(x0) = λ′(θ)Z; that is, the unbiased linear com-
bination of the observations that minimizes the variance of the prediction
error. It is straightforward to show that the corresponding weight vector
λ(θ) defining Ẑθ(x0) is given by

λ′(θ) = k′
θK

−1
θ + b′θ(F

′K−1
θ F )−1F ′K−1

θ ,(1)

where

F = {fj(xi)}n×q,

kθ = {Kθ(x0, xi)}n×1,

Kθ = {Kθ(xi, xj)}n×n,

bθ = f(x0) − F ′K−1
θ kθ.

In the example x = (x1, x2) and we can take f1(x) = x1 and f2(x) =
x2, the latitude and longitude of locations within the geographic region,
respectively. A third component of the mean will be added in Section 3.
The covariance function represents the covariance between the temperature
at the locations x = (x1, x2) and y = (y1, y2).

Note that the prediction weights λ′(θ) do not depend on α or β. Under
our Gaussian model, for fixed α,β, and θ, the conditional distribution of
Z(x0) is

Z(x0) | Z ∼ N
(

k′
θK

−1
θ Z + b′θβ,

where β̂(θ) = (F ′K−1
θ F )−1F ′K−1

θ Z and N(·, ·) denotes the Gaussian dis-
tribution. The prediction error, Z(x0) − Z(x0), then is mean-zero Gaussian
with variance Vθ = Kθ(x0, x0) − k′

θK
−1
θ kθ + b′θ(F

′K−1
θ F )−1bθ and αVθ as

given in Ripley (1981).
In traditional Kriging, one estimates α,β and θ by either likelihood

methods or various ad hoc approaches. The likelihood approach to the esti-
mation of the covariance structure was first applied in the hydrological and
geological fields following Kitanidis (1983), Kitanidis and Lane (1985) and
Hoeksema and Kitanidis (1985). Mardia and Marshall (1984) is a standard
reference in the statistical literature. As described below, the behavior of
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the predictor is usually estimated by “plugging-in” the estimates into 1 and
the prediction error variance. If θ is known so that only the location param-
eter β and the scale parameter α are uncertain then we are in a standard
generalized least-squares setting. The distinction between the generalized
least squares setting and the random field setting is the uncertainty in the
structural parameter θ.

As β is a location parameter we expect that our prior opinions about
β bear no relationship to those about α and a priori might expect α and
β to be independent, leading to the use of Jeffreys’s prior. Partly for
convenience, the form of the prior used here will be

pr(α, β, θ) ∝ pr(θ)/α

It easily follows from Zellner (1971) that the predictive distribution of Z(x0)
conditional on θ and Z is

Z(x0) | θ, Z ∼ tn−q

(
Ẑθ(x0),

n

n − q
α̂(θ)Vθ

)
,(2)

a shifted t distribution on n − q degrees of freedom.
The marginal posterior distribution of θ can be shown to be

pr(θ | Z) ∝ pr(θ) · |Kθ|−1/2|F ′K−1
θ F |−1/2α̂(θ)−(n−q)/2(3)

The Bayesian predictive distribution for Z(x0) is

pr(Z(x0) | Z) ∝
∫

Θ
pr(Z(x0) | θ, Z) · pr(θ | Z)dθ

where the integrand is given by 2 and 3 As the dependence of Kθ on θ
is not specified this expression can not be simplified and further explo-
ration will in general require numerical computation. If prior information
is available it may be directly incorporated into 3, although additional nu-
merical integration may be necessary if prior dependencies among (α,β, θ)
are envisaged.

Suppose we use an estimation procedure to select the parameters (α̃, θ̃)
of a covariance structure. These may be arrived at by any procedure, al-
though the usual methods are maximum likelihood, weighted least squares
or derived from empirical correlation functions. The distribution that an
investigator would use as a basis for inference about Z(x0) would be

Z(x0) | α̃, θ̃, Z ∼ N
(

Ẑθ̃(x0), α̃Vθ̃

)
,

plugging in (α̃, θ̃) for (α, θ) in the conditional distribution of Z(x0).
The difficulty of using a point estimate of the covariance structure as

a surrogate for the “true” covariance structure is that the uncertainty in
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the estimate is not directly translated to the final inference. The maximum
likelihood estimate may be the best single representative available, but this
reduction itself can be detrimental to the inference.

One approach to include the uncertainty in the estimate is to use the
Bayesian framework and base inference on the posterior distributions of
the quantities of interest. This approach takes into account the complete
likelihood surface rather than only plugging in the maximum likelihood
estimate of the covariance structure. It allows the performance of the usual
plug-in predictive distribution based on an estimated covariance structure
to be critiqued within a larger framework.

Depending on the influence of θ on the spread and location of
pr(Z(x0) | θ, Z), the Bayesian predictive distribution might be wider or nar-
rower than the plug-in predictive distribution. The location of the plug-in
predictive distribution may also be quite different from the Bayesian predic-
tive distribution. Typically the Bayesian predictive distribution will have
no simple analytic form and must be determined numerically. The differ-
ence between the plug-in and Bayesian predictive distributions represents
the difference in inference between the traditional Kriging approach and
the full Bayesian approach.

3. Modeling spring temperature fields. In this section we con-
sider a spatial model appropriate for a meteorological field over a single
time period. The field discussed here is the average spring temperature.
The daily average temperature at a location is defined to be the mean of
the daily maximum and the daily minimum at that location. The average
spring temperature is defined to be the average daily average temperature
over the months March, April and May.

The basis of the data is a network of 1219 stations (the HCN network)
for the contiguous United States developed by the U. S. Carbon Dioxide
Information Analysis Center “with the objective of compiling a data-set
suitable for the detection of climatic change” (Karl, Williams, Quinlan &
Boden (1990)). The actual data values are from Wallis, Lettenmaier and
Wood (1991) which applied a enhanced method of adjusting for missing
days (See Handcock & Wallis (1992)).

The components of the parametric mean function, fi(·), should clearly
include the latitude, longitude and elevation of each station. Other possi-
bilities are polynomials in latitude, longitude, elevation, and the distance
to the closest urban area or transformations of them. The ultimate choices
for components for the mean function were latitude, longitude and eleva-
tion, as additional components did not have an appreciable effect on the
likelihood ratios or on the likelihood function itself.

The parametric family of covariance functions used in this analysis is
the Matérn class discussed in Matérn (1986) and Handcock & Stein (1992)
that we feel provides a sound foundation for the parametric modeling of
Gaussian random fields. In the form used here it is spatially isotropic and
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homogeneous: Kθ(x, y) ≡ Kθ(|x − y|) is usually expressed as a function of
a single scalar variable:

1
2θ2−1Γ(θ2)

·
(

x

θ′1

)θ2

Kθ2

(
x

θ′1

)

where θ′1 = θ1/(2
√

θ2) and θ1 > 0 is a scale parameter controlling the
range of correlation. The smoothness of the field is controlled by θ2 > 0.
Kθ2 is the modified Bessel function of order θ2 discussed in Abramowitz
and Stegun (1964), §9.

The class is motivated by the smooth nature of the spectral density,
the wide range of behaviors covered and the interpretability of the param-
eters. The Exponential class corresponds to the sub-class with smoothness
parameter θ2 = 1/2, that is

KE(x) = θ1 exp(−x/θ1).

As θ2 → ∞, Kθ(x) → exp(−x2/θ2
1), often called the “Gaussian” covariance

function. We shall refer to it as the Squared Exponential model. This
model forms the upper limit of smoothness in the class. A general treatment
is given in the seminal work by Matérn (1986).

Based on meteorological arguments, we believe that the underlying
meteorological field is continuous and may be differentiable many times .
The magnitude of both random and systematic measurement error (“nugget
effect”) varies from year-to-year. It can be incorporated by adding a single
additional parameter (θ3) to the covariance function:

cov
{
Z(x), Z(y)

}
= α

(
θ3I(x = y) + Kθ(x, y)

)

where I(·) is the indicator function. For example, for 1984 the maxi-
mum likelihood estimate had no nugget effect (θ̂3 = 0). Typically the es-
timated nugget effect was 25% - 50% of the point variance. In contrast,
the mean winter temperatures reported in Handcock & Wallis (1992) the
nugget effect appeared to be small relative to the year to year variation.
As expected the estimate of the smoothness of the field increases when
a nugget effect is included. For example, for 1988 the maximum likeli-
hood estimate for the covariance structure based on the Matérn class is
(α̂, θ̂) = (1.33◦F 2, 1.02◦, 10.3, 77%). The range of dependence (1.02◦)
spans approximately a ninth of the region under study. The point stan-

dard deviation of the mean spring temperature is
√

α̂ + θ̂3 = 1.5◦F.
The smoothness of the field is estimated to be ten mean-square deriva-
tives. Under the Gaussian assumption this implies that the observed field
has ten derivatives. The likelihood is very flat for θ2 > 1. The maxi-
mum likelihood Squared Exponential model (θ2 = ∞) with a nugget ef-
fect is (α̂, θ̂) = (1.33◦F 2, 0.97◦, ∞, 76%), with only a 0.01 decrease in
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log-likelihood from the previous model. This feature was typical of most
years: the log-likelihood is very flat for large smoothness values indicating
that there is little information in the spatial observations to discriminate
between these smoothnesses in the presence of a substantial micro-scale
variation.

The estimates of the regression parameters indicate that the mean
spring temperature decreases about 1.4◦F per degree increase in latitude.
There is a 0.4◦F decrease per 1000 feet increase in elevation. In addition for
every degree increase in longitude eastward the mean spring temperature
decreases about 1.0◦F. This last effect is possibly a surrogate for the spring
climatic patterns over the region.

The prior used here for θ1 and θ2 reasonably assumes prior inde-
pendence between the smoothness and the range It is marginally non-
informative for θi

1+θi
on [0, 1] i = 1, 2. The prior reflects the belief that

higher values of the smoothness and range are a priori less likely than
smaller values. It should be emphasized that the method is designed to
incorporate an informative prior if the meteorologist, hydrologist and/or
statistician has one.
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Fig. 1. Time-series and empirical autocorrelation functions for four typical sites.

This spatial analysis was repeated independently for each year of data
from 1948-88.

We can add the temporal component of the model, generalizing the
random field to Zt(x) where t = 1948, . . . represents the spring of observa-
tion. We consider the time-series of data from each station, independent
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of the spatial information.
Figure 3.1 presents the time-series and empirical autocorrelation func-

tions for four spatially separate stations. Individually the time-series are
quite variable over time. Inspection of the series as a whole suggests a mild
upward trend over the last half century time. The right hand side figures
are the sample autocorrelation functions corresponding to the time-series.
The dashed boundaries represent approximate 95% confidence limits. Note
the similar patterns in the series over time and the lack of first lag auto-
correlation.

We investigated these fields for short-memory temporal structure. We
found little evidence for AR(1) structure and indication that the series are
close to uncorrelated over time. We also considered the presence of signifi-
cant dependence between observations a long time span apart, postulating
an autoregressive integrated moving average processes with non-integral
degrees of differencing, d. (ARIMA(p, d, q)). There was little (likelihood)
evidence for such structure.

4. Measuring areal mean temperature. In the previous sections
we found a complex spatial structure to the mean spring temperatures,
little temporal dependence structure and little evidence for changing spatial
structure over time. In this section we focus interest in a measure of the
areal mean temperature over the region of interest. The time-series of areal
mean temperatures is defined by:

Z̄t =
1
|R|

∫

R
Zt(x)dx t = 1948, . . . , 1988, . . .

where |R| is the area of the region R. Thus at each point in time, Z̄t repre-
sents the average temperature over the region and is a function of the field
Z(x). Z̄t provides a natural measure for the detection of changing climatic
patterns over the region. As the region is devoid of gross topographic fea-
tures, it provides a convenient measure of overall temperature during the
spring. It is important to note that Z̄t is a characteristic of the temper-
ature field itself, and not a characteristic of the stations in the network.
The behavior of the areal mean temperature will provide an indication of
the overall changes in climate over the region independent of the individual
stations.

Based on our model, we can summarize the available information for
Z̄t from the predictive density P (Z̄t | Z1948, Z1949, . . . , Z1988), that is, the
posterior density of Z̄t given the complete spatial-temporal information
available. The evidence in the previous section indicate that the temporal
dependence is weak so that P (Z̄t | Z1948, Z1949, . . . , Z1988) is very well
approximated by P (Z̄t | Zt). This also has the advantage of relative com-
putational tractability.
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Now

P (Z̄t | Zt) ∝
∫

Θ
P (Z̄t | θ, Zt) · P (θ | Zt) dθ(4)

where P (Z̄t | θ, Zt) is the predictive distribution conditional on θ and Zt,
and P (θ | Zt) is the posterior distribution for the structural parameter for
the year t given in 3. This calculation requires two-dimensional numerical
integration for each year. By plotting the predictive distributions over time
we can observe how our knowledge of the areal mean temperature changes
based on how the information in the network changes.

How can we further summarize the areal mean temperature? The
distributions are symmetric and have a similar t-like distributional shape.
The ratio of largest to smallest variance is 2.2. To further explore the
temporal changes in Z̄t we will consider the time-series of maximum a
posteriori (MAP) values from 4. While this clearly represents a reduction
in information relative to the full distribution, it facilitates examination.

4.1. Temporal structure of the mean areal temperature. Fig-
ure 4.1 represents the MAP values for the last half century. Note the
suggestion of a trend over time. Some interesting years have been indi-
cated.
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Using the same approach as §3 there was little evidence, over this
period, of short or long term dependence in the MAP values. However
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long term dependence in climatological series can occur over time scales of
a centuries or more and such dependence would not be apparent from our
half century of observation. The trend apparent in Figure 4.1 could simply
be an artifact of such long term dependence.

4.2. A static model for mean areal temperature. A reasonable
model for the mean areal temperature over the last half century is

Z̄t = µt + εt t = 1948, . . . , 1988, . . .(5)

where {εt}1988
t=1948 is an independent, and identically distributed Gaussian

sequence with zero mean and variance σ2. The sequence {µt}1988
t=1948 rep-

resents the mean level. The motivation is the absence of strong temporal
dependence and the approximate constant variances. One base line model
is that the means are temporally stable: µt ≡ µ. Here µ will be called the
static areal mean temperature.
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si
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0
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0
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0
.2

0
.3

0
.4 for the years 1948-67
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Fig. 3. Predictive distributions for the static areal mean temperature for two sep-
arate time periods. The solid line refers to 1948-67, while the dashed line refers to
1968-88.

Under the model 5, the posterior distribution for µ over time periods
Zt1 , . . . , ZtT , P (µ | Zt1 , . . . , ZtT ), is

∫

Z̄t1 ,...,Z̄tT

P (µ | Z̄tk) · P (Z̄tk | Ztk) dZ̄t1 . . . dZ̄tT

The first part of the integrand can be directly calculated and the latter is
available from 4. As in the previous case, this requires numerical integra-
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tion. Figure 4.2 represents the predictive distributions for the static areal
mean temperature for two separate time periods. They summarize our un-
certainty about the static areal mean temperature over these periods. The
solid line refers to 1948-67, while the dashed line refers to 1968-88. The
mean for the first period is 43.5◦F with a standard deviation of 1.0◦F. The
mean for the second period is 45.3◦F with a standard deviation of 1.4◦F.
Note that the distributions have a small overlap, with the information from
the latter years indicating warmer temperatures. The uncertainty in the
mean areal temperature for the latter period is larger, reflecting the in-
creased variation in the annual values.

A simple alternative model is

µt = µ + β(t − 1948) t = 1948, . . . , 1988, . . .

The posterior distribution of β is centered about 1.2◦F per decade and the
vast majority of its mass is on positive values. However this assumes a
linear trend which, as discussed in the previous section, is confounded with
any long term dependence over a time scale much longer than the forty
year observation period.

5. Conclusion. The Kriging procedure is often described as optimal
(Matheron (1971)) because it produces optimal predictions when the co-
variance structure of the random field is known. If the covariance structure
is not known and needs to be estimated, it is then necessary to assess the
effect of the estimation on the prediction and the associated prediction
uncertainty.

The approach in this paper takes into account the uncertainty about
the covariance function expressed in the likelihood surface and ignored by
point estimates of the covariance function.

The application to modeling spring temperature indicates that there
is significant micro-scale variation over a spatially smooth field. There is
substantial variation in the spring temperature from year-to-year that is
spatially correlated (Figure 3.1). The areal mean temperature is corre-
spondingly variable and appears to be increasing over the period consid-
ered (Figure 4.1). However, this finding has been confirmed using different
statistical approaches (Lettenmaier, Wood and Wallis (1992)). It is also
evident from this later study that, had other regions or periods been picked,
the results would have been quite different. When the model parameter
uncertainty is incorporated for the increase in areal mean temperature is
still discernible (Figure 4.2).
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