Title
Detoxification and Accumulation of Cadmium and Arsenic in Plants: Implications for Phytoremediation and Limiting Accumulation in Foods

Permalink
https://escholarship.org/uc/item/09406346

Author
Jobe, Timothy O.

Publication Date
2013

Peer reviewed|Thesis/dissertation
Detoxification and Accumulation of Cadmium and Arsenic in Plants: Implications for Phytoremediation and Limiting Accumulation in Foods

A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy.

in

Biology

by

Timothy O. Jobe

Committee in Charge:

Professor Julian Schroeder, Chair
Professor Joseph Ecker
Professor Elizabeth Komives
Professor Robert Tukey
Professor Yunde Zhao

2013
The Dissertation of Timothy O. Jobe is approved, and it is acceptable in quality and form for publication on microfilm and electronically:

_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________

Chair

University of California, San Diego
2013
# TABLE OF CONTENTS

Signature Page ................................................................................................................................. iii
Table of Contents ............................................................................................................................ iv
List of Tables and Figures ............................................................................................................. v
Acknowledgements ....................................................................................................................... vi
Vita ................................................................................................................................................ vii
Abstract of the Dissertation ........................................................................................................ viii
Chapter 1: Genome-wide yeast one-hybrid to identify transcriptional regulators of sulfate assimilation genes ...................................................................................................................... 1
  1.1. Introduction ......................................................................................................................... 2
  1.2. Results ............................................................................................................................... 10
  1.3. Discussion ........................................................................................................................ 16
  1.4. Materials and Methods ................................................................................................... 17
  1.5. References ....................................................................................................................... 23

Appendix 1: Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient g-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation ............................................. 30

Appendix 2: Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic ................................................................. 44
LIST OF TABLES AND FIGURES

Figure 1: Heat map of the 6 yeast one-hybrid experiments performed .............................14
Figure 2: Venn diagram of the yeast one-hybrid results ....................................................15
Figure 3: Root elongation assay of anac102-1 and anac102-2 mutants ............................16
Table 1: Top three ranked transcription factors for each promoter .................................20
ACKNOWLEDGMENTS

Appendix 1, in full, is a reprint of the material as it appears in The Plant Journal 2012. Jobe, T. O., Sung, D.-Y., Akmakjian, G., Pham, A., Komives, E. A., Mendoza-Cózatl, D. G. and Schroeder, J. I. (2012), Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation. The dissertation author was the primary author of this paper.

Appendix 2, in full, is a reprint of the material as it appears in Current Opinion in Plant Biology 2011. Mendoza-Cózatl, D.G., Jobe, T.O., Hauser, F. and Schroeder, J.I. (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. The dissertation author made major contributions to the writing of this paper.
VITA

2007 – 2013      Doctor of Philosophy in Biology, University of California, San Diego

2005 – 2007      Master of Science in Agronomy, New Mexico State University

2000 – 2005      Baccalaureate of Science in Chemical Engineering, New Mexico State University

PUBLICATIONS


ABSTRACT OF THE DISSERTATION

Detoxification and Accumulation of Cadmium and Arsenic in Plants: Implications for Phytoremediation and Limiting Accumulation in Foods

by

Timothy O. Jobe

Doctor of Philosophy in Biology

University of California, San Diego, 2013

Professor Julian I. Schroeder, Chair

Many of the metals and metalloids commonly used by our modern society are extremely toxic and can pose a significant health risk if consumed. However, unlike animals, some plants are often extremely tolerant to the toxic effects of these metals and can accumulate large amounts in various tissues. Because some plants can bioaccumulate toxic metals, a number of bioremediation strategies using plants have been proposed. However, accumulation of toxic metals in agronomic crops is not desirable. In fact, interest is growing within the plant breeding community to reduce the accumulation of toxic metals in key crops. Whether we are interested in increasing accumulation for remediation, or reducing accumulation for human consumption, understanding the
molecular and genetic mechanisms underlying toxic metal sensing, uptake, detoxification, and storage are paramount for success. This dissertation outlines the systematic approaches we have taken to understand many of these processes. In the first part of this dissertation, the cloning and screening of cadmium/arsenic-inducible promoter elements using a genome-wide yeast one-hybrid approach along with microarray analyses of known mutants are presented. This is a continuation of the work presented in Appendix 1, which focuses on developing a cadmium/arsenic-inducible reporter line and screening, identifying, and characterizing new mutants in the glutathione biosynthesis pathway. Appendix 2 is a review article highlighting recent advances in the field of toxic metal tolerance and presents key gaps in our knowledge.
Chapter 1:
Genome-wide yeast one-hybrid to identify transcriptional regulators of sulfate assimilation genes
1.1. Introduction

Cadmium, arsenic, lead, and mercury are toxic metal(loid)s that have no known role in animal or plant nutrition and are considered detrimental to human health and the environment. These substances are among the top 7 contaminants listed on the EPA Superfund’s list of priority hazardous substances, and can be found at high levels in soils and waters throughout the country. Widespread contamination from anthropogenic inputs is a growing problem. Metals are widely used in industrial processes and equipment, including battery production, electronics, paints, fertilizers and fuel production. Industrialization has drastically increased emissions of toxic metal(loid)s into the environment, which is a major concern for people living near industrial areas where toxic metal(loid) emissions are highest. Metal contamination has become a serious worldwide environmental health issue due to two centuries of intense industrial activity combined with inappropriate waste disposal. Many diseases and disorders have been linked to high levels of toxic metal(loid) exposure, including high rates of lung cancer in workers from cadmium recycling and recovery facilities. The toxic effects of heavy metals have also been linked to hypertension, myocardial infarction, and diminished lung function.

Plants and seeds are the main dietary source of many essential metals, including zinc, iron, manganese and copper, not only for humans but also for livestock. Plant-based products are also the main entry point for toxic elements (cadmium, lead, arsenic, and mercury) into the food chain, and many cases of heavy metal poisoning have been attributed to widespread consumption of contaminated products. Understanding the molecular mechanisms underlying plant uptake, transport and accumulation of both
essential and non-essential metals will have two major impacts on human health. First, it will enhance the nutritional value and safety of plant products by enhancing the accumulation of essential metals while avoiding the retention of toxic metals. Second, it will allow us to use plants to restore and remediate heavy metal contaminated sites, which is a preferred alternative to physical removal of metals. The identification of genes and molecular mechanisms that allow plants to take up, tolerate and accumulate toxic metals will accelerate the engineering of plants for remediation purposes.

1.1.1 Metal uptake and mobilization

The distribution of metals within a plant is a dynamic process that can be divided into the following processes: (i) root uptake and intercellular mobilization, (ii) xylem-loading/unloading and (iii) phloem-loading/unloading. In Arabidopsis, Fe, Cd, Mn and Zn are taken up from soil by IRT1, a member of the ZIP (Zinc/Iron regulated transporter Proteins) family of transporters 15-17, while arsenic has been shown to be taken up by inorganic phosphate transporters. Once inside the cell, metals can be sequestered into different cellular compartments or mobilized through the root for xylem loading and root-to-shoot transport 18,19. Cadmium uptake by IRT1 and xylem loading mediated by HMA2 and HMA4 have been extensively studied 15,20-22. However, phloem transport and seed loading have been far less studied, perhaps due to the technical difficulties associated with phloem sampling and sap modification. Phloem plays a key role in delivering compounds to developing seeds where xylem-mediated transport is negligible due to the limited transpiration rate within reproductive tissues 23. Phloem is a plant tissue composed of two highly specialized low-abundance cells called companion cells and sieve elements.
Companion cells transfer molecules into sieve elements for long-distance transport between mature leaves, younger leaves, roots and seeds. Thus, transporters expressed in companion cells are critical proteins regulating the long-distance movement of molecules, including toxic metals. Despite their importance, the identity and abundance of phloem-specific metal transporters as well as their regulation during plant development is largely unknown.

The Arabidopsis genome is estimated to have approximately 25,500 open reading frames (ORFs or potential genes), of which 7% (approx. 1700 genes) are predicted to encode transporters. Based on this large number of transporters and the potential for overlapping function between members of the same gene families, a forward genetic screen designed to identify genes mediating the mobilization of molecules into seeds would be time consuming and inefficient. Therefore, alternate approaches must be developed to identify and characterize the transporters involved in mobilizing metals throughout the plant.

1.1.2 Toxic metal accumulation and storage in plants

Phytochelatins are glutathione-derived peptides synthesized in the cytosol upon exposure to Cd, As, Zn, Hg or Cu \(^{24-26}\). After being synthesized, they rapidly form PC-metal complexes that are transported into vacuoles, removing these toxic elements from the cytosol \(^{25-28}\). More than 15 years ago, research suggested that vacuolar uptake of PC-metal complexes was mediated by ATP-binding cassette transporters (ABC transporters) \(^{29-31}\). However, attempts to identify vacuolar PC transporters in plants were unsuccessful.
By conducting a systematic analysis of the ABC transporter family in the fission yeast *Schizosaccharomyces pombe*, we were able to identify Abc2 as a novel vacuolar PC transporter. Our results indicated that *S. pombe* has two independent mechanisms for vacuolar sequestration of PC-Cd complexes, one mediated by Hmt1, a half-size ABC transporter and a different mechanism mediated by Abc2, a full-size ABC transporter. Notably, plants do not have Hmt1 homologues but they do have homologues of Abc2, which are the ABCC family of ABC transporters.

Furthermore, Arabidopsis mutants carrying T-DNA insertions in genes displaying a high degree of similarity with *S. pombe* Abc2 were subsequently identified that led to the identification of ABCC1 and ABCC2 as the long-sought plant vacuolar PC transporters. Both, ABCC1 and ABCC2 are able to mediate the uptake of PCs in vacuolar preparations obtained from yeast expressing either ABCC1 or ABCC2. The single insertion mutants *abcc1* and *abcc2* are not sensitive to either Cd or As but the double mutant *abcc1 abcc2* is both Cd, Hg and As hypersensitive. *ABCC1* and *ABCC2* are expressed approximately 3-fold higher in roots compared to shoots and in the Arabidopsis ecotype Col-0, roots are the main sink for Cd storage.

Phytochelatins have long been considered part of an intracellular mechanism for Cd detoxification. However, recent evidence suggests that PCs also play a key role in mobilizing cadmium from leaves to roots. Shoot-specific expression of PC-synthase in a PC-deficient mutant showed that despite being synthesized in leaves, PCs were preferentially accumulated in roots. Transport of molecules from leaves to roots occurs exclusively through the phloem and direct analysis of phloem and xylem sap by mass spectrometry demonstrated that PCs were more abundant in the phloem sap compared to...
the xylem sap and in sufficient quantities to chelate the Cd found in phloem sap. These results led to a model where Cd is removed from leaves to protect photosynthesis, which is extremely sensitive to Cd. Other metal ligand molecules found in phloem sap are nicotianamine and GSH. Nicotianamine has been shown to form complexes with Fe$^{2+}$, Cu$^{2+}$, Zn$^{2+}$ and Mn$^{2+}$. While GSH and PCs have orders of magnitude higher affinities for the heavy metal(loid)s Cd$^{2+}$, Zn$^{2+}$, Hg$^{2+}$ and As$^{3+}$ {Mendoza-Cozatl, 2008}. In fact, extended X-ray absorption fine structure (EXAFS) analysis of seeds shows that 60% of Cd is coordinated with thiol-containing ligands.

The mechanisms by which GSH, PCs and toxic metals are loaded into the phloem are not known. The identification of phloem transporters will allow us to address these questions and advance our understanding of how molecules are mobilized between leaves and roots and into seeds.

1.1.3 Phytoremediation

Trace metals, such as iron, zinc, manganese and copper are essential micronutrients to all organisms and function as co-factors in a variety of enzymes and proteins. It has been estimated that one-third of all proteins require one of these metals for proper folding and activity. Trace metals are highly reactive and their intracellular concentration must be tightly regulated to prevent toxicity. Other metals, such as cadmium (Cd), lead, chromium, mercury and the metalloid arsenic are biologically non-essential but, because of their chemical similarity, can enter plants using the same transporters used for essential metals. Inside the cells, non-essential metals impair metabolism by displacing and interfering with the function of essential metals.
Non-essential metals are toxic to plants at any level; however, essential metals can also be toxic if they accumulate to high levels.

Traditional methods of remediating metal contaminated soil and water include excavation, transport, and reburial of contaminated soil and evaporation, filtration or electro-chemical removal from contaminated waters. These methods are both labor and energy intensive making them cost ineffective. Because plants are sessile and have little control over the soil or water they must survive in, they have developed unique strategies to cope with metal(loid) toxicity. This makes them well adapted for use in the bioremediation of highly contaminated sites (referred to as phytoremediation).

Cadmium is an important pollutant due to its relatively high solubility and toxicity. Cadmium has no distinct function in human health and is extremely toxic at low concentrations. The main oxidation state of cadmium is +2, which means that it can interfere with calcium, copper, iron, magnesium, and manganese containing enzymes by displacing these elements and competing with transport \(^{44}\). While cadmium cannot undergo Fenton-type reactions, it is highly reactive with sulfhydryl groups and is thought to cause lipid oxidation.

Arsenic is an extremely toxic metalloid, and arsenic pollution has been recognized as an environmental problem worldwide. Arsenate (+5) is a chemical analogue of phosphate and can disrupt phosphate metabolism in plants, while arsenite (+3) is highly reactive with the sulfhydryl groups of enzymes and proteins, causing oxidation of proteins, inhibition of cellular function and cell death \(^{45}\). Because cadmium and arsenic are both highly reactive with sulfhydryl groups, they are detoxified by similar mechanisms in plants.
Therefore, it is important to investigate the mechanisms by which plants take up and detoxify metalloid(s). Research over the past few decades indicates that uptake and subsequent accumulation of toxicants in the aerial portions of plant tissues could provide a cost effective approach for cadmium and arsenic removal and remediation.

1.1.4 Cadmium and Arsenic Detoxification in Plants

The mechanisms underlying cadmium and arsenic detoxification are biochemically well established. Exposure to cadmium and arsenic enhances the expression of sulfate assimilation genes for detoxification. Sulfur is a macronutrient in plants and is available primarily in the form of sulfate (SO$_4^{2-}$) present in soil. Sulfate is actively transported into roots and then distributed throughout the plant. The high affinity sulfate transporter, SULTR1;2 is induced by both arsenic and cadmium. Once sulfate enters the root, it is reduced in a series of ATP-dependent reactions and incorporated into the amino acid cysteine (Cys). Cysteine can then be converted to methionine, glutathione (GSH), and other sulfur-containing metabolites. GSH, the most abundant thiol molecule in plant cells, is synthesized in two ATP-dependent steps catalyzed by γ-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GSHS). Upon toxic metal exposure, plants also produce thiol compounds called phytochelatins, which are polymers of GSH. Phytochelatins (are synthesized from GSH by the enzyme phytochelatin synthase and have a general structure of (γ-glutamylcysteine)$_n$Gly (n=2-11). PCs have a very high affinity for cadmium and arsenic, which allow PCs to quickly chelate and sequester them in the vacuole.
production can be induced by a wide range of ions, including Ag\(^+\), As\(^{V}\), Cd\(^{2+}\), Cu\(^+\), Hg\(^{2+}\), Cu\(^+\), Hg\(^{2+}\), and Pb\(^{2+}\), with Cd\(^{2+}\) being the most potent\(^{54-56}\).

Unfortunately, our understanding of the cellular signaling underlying heavy metal uptake, transport, and accumulation in plants remains incomplete. The complexity of signal transduction in higher plants is a result of spatial and temporal signal separation, cross talk between signaling networks, and extensive genetic redundancy. As a result, classical forward genetic screens have proven ineffective at elucidating the signaling cascades responsible for plant responses to many different external stimuli.

1.1.5 Cadmium and Arsenic Signaling in Plants

While the biochemical mechanisms for metal(loid) detoxification are well understood, the transcriptional regulation is still largely unknown. Recently, point mutants in a gene called sulfur limitation1 (SLIM1) were identified that play an important role in the regulation of the sulfate assimilation pathway under sulfur limiting conditions (-S). SLIM1 is a central transcriptional regulator that is reported to activate the SULTR1;2 high affinity sulfate transporter in Arabidopsis under -S conditions \(^{57}\). The transcript levels of SULTR1;2 are nearly abolished under –S conditions in the slim1-1 and slim1-2 mutants \(^{57}\). Metabolite accumulation was also affected in the SLIM1 mutants, where slim1-1 and slim1-2 show a significant decrease in GSH levels compared to wild type when grown on low sulfur media \(^{57}\). These findings indicate the importance of SLIM1 in sulfur metabolism.

The transcriptional regulation of heavy metal(loid)-induced gene expression remains largely unknown in plants. While SLIM1 is a central regulator of the sulfate
assimilation pathway, it is unclear if SLIM1 plays a role in activation of sulfate assimilation during metal(loid) detoxification. The complex regulation of sulfate assimilation and the unknown role of SLIM1 in metal(loid) detoxification raises the question whether SLIM1 acts together with other yet unknown transcription factors to be part of a large regulatory network. However, the large number of transcription factor families and the potential partially unequal redundancy of certain family members represent a challenge. Recently, a small library became available which addresses genetic redundancy in Arabidopsis using artificial microRNAs. Targeting multiple homologous transcription factors allowed for screening of large groups of genes, while reducing or eliminating functional overlap. Unfortunately, the initial screen was unable to narrow down potential transcription factors involved in metal(loid) detoxification. A larger library of amiRNA lines is now available that may allow us to gain a deeper understanding of specific transcriptional activators and repressors involved in metal detoxification.

In this dissertation, we present work aimed at uncovering the genes and mechanisms underlying the cadmium and arsenic transcriptional responses using a variety of approaches.

1.2. Results

**Genome-wide Yeast One-Hybrid**

To identifying transcription factors that mediate Cd/As-induced gene expression in plants, we performed genome wide yeast one-hybrid analyses on the promoter fragments of four Cd/As-induced genes, specifically the SULTR1;2, APR2, γ-ECS, and
GS promoters. Our goal was to identify the unknown master transcriptional regulators and repressors that control the promoters of multiple Cd/As-induced genes. We cloned the 2.1 kb promoter region previously characterized for SULTR1;2 as well as a 2.1 kb promoter fragment from APR2. The promoter fragments were shorter for g-ECS and GS due to the presence of upstream genes. The g-ECS promoter was approximately 1.4 kb in length, while the GS promoter was 800 bp.

We used these promoter fragments to screen approximately 2,100 Arabidopsis transcription factors for DNA-protein interactions in a yeast one-hybrid assay. The GS, γ-ECS, and APR2 promoters were screened using a previously published transformation based protocol. The SULTR1;2 promoter was screened using a mating-based protocol. Because we had little experience with the new protocol, we screened the SULTR1;2 promoter 3 times to determine the level of reproducibility of this method. Figure 1 shows a heat map of the β-gal values determined from each of the 6 screens we performed. In general, the mating-based protocol identified more putative DNA-protein interactions; however, there was a low degree of reproducibility between the 3 replicate experiments. For the 3 transformation-based screens, a smaller number of putative interactions were identified.

Interestingly, a number of transcription factors were identified in more than one screen. For simplicity, we averaged the β-gal values between the 3 SULTR1;2 screens and compared with the β-gal values obtained from the remaining screens. We compared the results in two different ways. First, we considered interactions having z-scores ≥ 2.0, which is traditionally used in yeast one-hybrid analyses. Secondly, we performed outlier detection analysis using an R script. Figure 2 shows Venn diagrams indicating the
number of interactions identified and the overlap between the screens using both the z-score method (Figure. 2A) and the outlier detection method (Figure. 2B). In general, the outlier detection algorithm identified more putative interactions and more overlapping interactions between the different promoters than the z-score method. However, in both cases the total number of putative interactions was unexpectedly high.

To look more closely at the interactions identified by these screens, we decided to focus on the three interactions from each screen with the highest total $\beta$-gal values. Table 1 shows the 3 interactions with the highest $\beta$-gal values from each of the 4 yeast one-hybrid screens along with the number of putative interactions with a $\beta$-gal value of 2.0 or greater. We obtained T-DNA insertion lines in these genes and performed root elongation assays on the individual mutant lines to determine their sensitivity to cadmium. Only one mutant, Salk_094437C, was identified as having a cadmium-dependent phenotype. We obtained an additional T-DNA disruption mutant in the At2G46270 (ANAC102) gene. Our initial screen of these T-DNA mutants revealed that both independent alleles of ANAC102 as showing Cd tolerance (anac102-1, Salk_030702C; anac102-2, Salk_094437C Figure. 3). No differences in growth were observed in the absence of Cd.
**Figure. 1:** Heat map of the 6 yeast one-hybrid experiments performed. Three independent replicate experiments were performed on the SULTR1;2 promoter (represented as 1, 2, and 3). The APR2, g-ECS and GS promoters were screened using a transformation based protocol, while the SULTR1;2 promoter was screened using a mate-based protocol.
Figure 2: Venn diagram of the yeast one-hybrid results. A) The results were filtered by z-score using a score of 2.0 or greater as indicating a putative DNA-protein interaction. B) The results were filtered using an outlier detection program.
Figure 3: Root elongation assay of anac102-1 and anac102-2 mutants. Two independent T-DNA disruption mutant alleles in a NAC transcription factor At5G63790 (ANAC102) show enhanced Cd tolerance in Cd-sensitive root growth assays. Wild type (WT) and two independent T-DNA alleles, anac102-1 (Salk_030702C) and anac102-2 (Salk_094437C), were grown with Cd for 7 days. Seedling growth of the mutant alleles was drastically longer than WT.
Table 1: Top three ranked transcription factors for each promoter

<table>
<thead>
<tr>
<th>Promoter</th>
<th>Gene ID</th>
<th>Gene Name</th>
<th>Maximum (z-score &gt;=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR2</td>
<td>AT1G49720</td>
<td>ABF1</td>
<td></td>
</tr>
<tr>
<td>APR2</td>
<td>AT5G63790</td>
<td>NAC102</td>
<td></td>
</tr>
<tr>
<td>APR2</td>
<td>AT5G65210</td>
<td>TGA1, a redox-controlled regulator</td>
<td>37</td>
</tr>
<tr>
<td>γ-ECS</td>
<td>AT3G61890</td>
<td>HB12</td>
<td></td>
</tr>
<tr>
<td>γ-ECS</td>
<td>AT5G15800</td>
<td>SEPALLATA1 (SEP1)</td>
<td>32</td>
</tr>
<tr>
<td>γ-ECS</td>
<td>AT5G41570</td>
<td>WRKY24</td>
<td></td>
</tr>
<tr>
<td>GS</td>
<td>AT1G36060</td>
<td>DREB</td>
<td></td>
</tr>
<tr>
<td>GS</td>
<td>AT2G40470</td>
<td>LBD15</td>
<td>65</td>
</tr>
<tr>
<td>GS</td>
<td>AT4G04890</td>
<td>PDF2</td>
<td></td>
</tr>
<tr>
<td>SULTR1;2</td>
<td>AT2G01370</td>
<td>storekeeper related</td>
<td></td>
</tr>
<tr>
<td>SULTR1;2</td>
<td>AT2G41070</td>
<td>EEL</td>
<td></td>
</tr>
<tr>
<td>SULTR1;2</td>
<td>AT5G62920</td>
<td>ARR6</td>
<td>62</td>
</tr>
</tbody>
</table>

1.3. Discussion

The genome-wide yeast one-hybrid screen identified numerous putative DNA-protein interactions. The three SULTR1;2 promoter screens showed a low level of reproducibility (see Figure 1). However, there was significant overlap between several of the clusters. Interestingly, the remaining three screens showed far fewer interactions than the SULTR1;2 promoter screens. Our hypothesis that a limited number of transcriptional regulators are responsible for the co-regulation of these four cadmium-inducible genes was partially supported by the level of overlap identified between the four promoter screens (Figure 2). Unfortunately, the large number of putative overlapping interactions makes it difficult to determine which individual transcription factor or group of transcription factors may play a significant role in mediating early transcriptional responses to cadmium and arsenic.
To further narrow down the most promising candidates, we also ranked the hits from the yeast one-hybrid screens and focused on the three hits with the highest Z-scores (Table 1). Initial root-elongation screens using mutants in these 12 genes identified a single mutant in the ANAC102 gene having a long-root phenotype on cadmium (Figure 3). Further characterization showed that two different mutant alleles, \textit{anac102-1} and \textit{anac102-2} both had similar root elongation phenotypes on cadmium. Unfortunately, both of these mutants also exhibited long-roots when grown without cadmium, which suggests the phenotype is not cadmium or arsenic specific. These results suggest that additional screening of higher order mutants may be required to identify the genes that specifically mediate cadmium and arsenic responses in plants.

1.4. Materials and Methods

Ecotypes

The wild type \textit{A. thaliana} ecotype used was Columbia-0 (Col).

Plant Growth Conditions

Seeds were sterilized and plated on plates containing one-quarter strength Murashige and Skoog (MS) standard medium (Sigma M5519), 1 mM MES, 1% phytoagar (Duchefa), and the pH adjusted to 5.6 with 1.0 M KOH. Sterilized nylon mesh with a 200 μm pore size (Spectrum Labs, TX) was placed on the surface of the media prior to sowing the seeds. The seeds were then acclimated with cold treatment at 4 °C for 48 hours, and grown under growth room conditions for five days (300μmol.m$^{-2}$.s$^{-1}$, 70% Hr, 16h light 21°C/8h dark 18°C). Seedlings were then transferred to quarter strength
For hydroponic cultures, plants were grown on ¼ MS plates for 6 weeks under growth chamber conditions as described above. Seedlings were then transferred from ¼ MS plates to polystyrene rafts floating on hydroponics solution. The composition of the hydroponics solution is as follows: KNO₃ 0.5mM, Ca(NO₃)₂ 0.25mM, MgSO₄ 1mM, KH₂PO₄ 1mM, Fe(III)-Na-EDTA 100μM, H₃BO₃ 50μM, MnCl₂ 19μM, CuSO₄ 1μM, ZnCl₂ 10μM, MoO₄Na₂: 0.02μM, pH 5.8. The nutrient solutions were replaced every seven days.

**Root Growth Assays**

For root growth analysis Arabidopsis seedlings were grown horizontally on one-quarter-strength Murashige and Skoog (MS) basal medium (Sigma Aldrich), 1 mM MES, 1% agar for a period of four days. Seedlings and nylon mesh were then transferred to MS plates supplemented with 100 μM CdCl₂ for an additional four days. Seedlings used for shoot growth analyses were grown horizontally under 16/8-h day/night period at 23°C. To measure metal accumulation, plants were grown under hydroponic conditions in liquid media until bolting stage (approximately 4 weeks). Shoots were rinsed 3 times in deionized water. For ICP-OES analyses of root tissue, roots were rinsed in deionized water, washed in 100 mL of 100 mM CaCl₂ on an orbital shaker (Bellco Glass, Inc., NJ) for 5 minutes at approximately 135 rpm (speed setting #4), and then washed in 100 mL of deionized water on the orbital shaker (speed setting #4) for an additional 3 minutes. Shoot tissues were separated immediately below the cotyledons and above the
hydroponic sponge. Root tissues were separated below the hydroponic sponge, approximately 3 cm below cotyledons. Both shoot and root tissues were dried at 60°C overnight. The dry weight was recorded, and then the tissues were digested in 70% trace metal grade nitric acid (Fisher Scientific) overnight. Samples were then boiled for 30 minutes to ensure complete digestion and diluted to a final concentration of 5% nitric acid with deionized water.

**Metal Determination Using ICP-OES**

To measure the metal accumulation of plate-grown plants, Arabidopsis seedlings were grown in minimal media (Lee et al., 2003) for 4 days then exposed to 100 µM metal(loid) by transferring seedlings with nylon mesh to minimal media with metal(loid). Plants were allowed to continue growing in arsenic-containing medium for 6, 12, 24 and 48 h. The plants were then washed briefly with distilled water twice. The plant seedlings were dried in a drying oven at 60°C overnight, the dry weight was measured, and the dry material was digested by boiling in concentrated nitric acid (Trace Metal grade; Sigma-Aldrich; http://www.sigmaaldrich.com/). These digests were then diluted with deionized water and the metal content of the digested samples was analyzed with a Varian Vista Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). Total concentrations of metals were normalized based on the dry weight of the plant samples.

Plants used for Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) and Fluorescence HPLC analysis were grown under hydroponic conditions. Plants were grown under hydroponic conditions at 24°C under a 16/8-h day/night period and
hydroponic media were replaced every 3-4 days. After reaching the bolting stage (approximately 4 week old plants) the hydroponic media was replaced with the same media to which 20 mM CdCl₂ was added for a period of four days for cadmium accumulation analyses, whereas the hydroponic media containing 20 µM CdCl₂ was added for a period of two days for induction of PCs. Shoot and root tissues were rinsed three times in deionized water for fluorescence HPLC coupled to mass spectrometry analyses. Thiols, including PCs were analyzed using the method described by Jobe et al. (2012).

To measure metal accumulation, plants were grown under hydroponic conditions in hydroponic media (12.5 mM KNO₃, 6.25 mM KH₂PO₄, 5 mM MgSO₄, 5 mM Ca(NO₃)₂, 125 mM Fe-EDTA, 3.5 mM H₃BO₃, 1.1 mM MnCl₂, 100 mM ZnSO₄, 12.5 mM NaMoO₄, 500 mM NaCl, 900 mM CoCl₂) until the bolting stage. Cadmium treated plants grown under hydroponic conditions were first washed and then separated into root and shoot tissues. Shoot tissues were separated immediately below the cotyledons and above the hydroponic sponge. Root tissues were separated below the hydroponic sponge, approximately 3 cm below the cotyledons. Shoots were rinsed three times in deionized water. For ICP-OES analyses of root tissue, roots were rinsed in deionized water, washed in 100 mL of 100 mM CaCl₂ on an orbital shaker (Bellco Glass, Inc., NJ) for 5 minutes at approximately 135 rpm (speed setting #4), and then washed in 100 mL of deionized water on the orbital shaker (speed setting #4) for an additional three minutes. Both shoot and root tissues were dried at 60°C overnight. The dry weight was recorded, and then the tissues were digested in 70% trace metal grade nitric acid (Fisher Scientific)
overnight. Samples were then boiled for 30 minutes to ensure complete digestion and
diluted to a final concentration of 5% nitric acid with deionized water.

**Plant Transformation**

*Arabidopsis thaliana* ecotype Col-0 was transformed using the floral dip method
(Clough and Bent, 1998). The helper plasmid, pSoup, was used for the pGreenII-carrying
strains (Hellens et al., 2000). Hygromycin selection of transformants was performed in
both the T1 and T2 generations.

**HPLC-MS analyses of thiol peptides**

Seeds were sown on plates having sterile nylon mesh with a 200 μm pore size
(Spectrum Labs, http://www.spectrumlabs.com) on the surface of the media. Seedlings
were grown under standard growth conditions for 14 days. Seedlings were then
transferred to plates containing either control ¼ MS media or ¼ MS media supplemented
with 100 μM CdCl₂ for 48 hours. Seedlings were harvested after 48 hours of treatment
and immediately flash frozen in liquid nitrogen to minimize the oxidation of thiol
compounds. Thiol-containing compounds (cysteine, γ-EC, GSH, and PCs) were
extracted, and reduced thiols were derivatized and quantified by fluorescence HPLC-MS
as described by Mendoza-Cozatl (2008). Thiol measurements were quantified using the
XCALIBUR software package (Version 1.3, Thermo Scientific, http://www.thermoscientific.com). Thiol standards of glutathione, cysteine and γ-EC were
purchased from Sigma-Aldrich. All reported thiol quantities are means of three
biologically independent samples, and error bars indicate the standard error of the mean (SEM).

**Total RNA isolation**

Seedlings were grown under standard growth conditions for 14 days. Before sowing seeds onto plates, sterilized nylon mesh with a 200 µm pore size (Spectrum Labs, http://www.spectrumlabs.com) was placed on the surface of the media. The seedlings were grown on nylon mesh for 14 days. The seedlings were then harvested and plant tissue was immediately flash frozen into liquid nitrogen for RNA extraction. Total RNA was extracted by using a commercial RNA extraction kit (RNeasy Plant RNA Isolation Kit; Qiagen, http://qiagen.com). A total of 5 µg of RNA was treated with DNase 1 to remove DNA contamination (Invitrogen, http://www.invitrogen.com).

**cDNA synthesis**

1 µg of the DNase1 treated total RNA was reverse-transcribed with a NotI-d(T)_{18} primer using a First Strand cDNA kit (GE Healthcare, http://www.gehealthcare.com) following the manufacturer’s instructions.

**RT-PCR analysis**

Reverse-transcribed cDNA was used for PCR. The following PCR conditions were used: 1) initial denaturation at 95°C for 5 min, 2) DNA denaturation for at 95°C for 15 sec, 3) primer annealing at 52°C for 15 sec, 4) extension at 72°C for 1 min, and 5) a final extension at 72°C for 5 min. Steps 2-4 were repeated for 25-30 cycles. Elongation
factor-1α (EFF-1α) expression was used as a loading control. Table Z contains a list of all primers used in this study.

**Quantitative RT-PCR analysis**

PCR mixtures were prepared using SYBR® Green JumpStart™ Taq ReadyMix™ for Quantitative PCR (Sigma-Aldrich). The 384-well plates (BIO-RAD) were loaded with 5 µl of SYBR® Green JumpStart™ Taq ReadyMix™, 0.5 µl of cDNA, 2.5 µl of MQ water, and 1 µl (1.0 µM) of each primer for a total volume of 10 µl per well. Before starting the PCR, a short centrifugation step of 1 minute at 1,000 rpm was performed to ensure the mixture was at the bottom of each well. Reverse-transcribed cDNA was used for qRT-PCR on the CFX384 Touch™ Real-Time PCR Detection System (BIO-RAD) with the following conditions: 95°C for 3 min followed by 40 cycles of 10 sec at 95°C, 10 sec at 60°C, and 15 sec at 72°C. The products were analyzed with a melting-curve of 95°C for 1 min, 60°C for 2 min, and 50°C for 2 sec, followed by a temperature cycle from 50°C to 85°C (0.5°C/sec) and continuous fluorescence reading. Table 4 contains a list of all primers used in this study. Calculations were performed using the comparative C_T method (Schmittgen et al., 2008) and normalized to *EF1-α* expression.

1.5. References


Appendix 1:

Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient g-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation
Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient \( \gamma \)-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation

Timothy O. Jobe1,*, Dong-Yul Sung3,1, Garo Akmakjian1, Allis Pham1, Elizabeth A. Komives2, David G. Mendoza-Côzatl1,3 and Julian I. Schroeder1,3

1Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093 0116, USA,
2Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 0378, USA, and
3Division of Plant Sciences, C. S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211-7310, USA

Received 15 February 2011; revised 19 January 2012; accepted 24 January 2012; published online 1 April 2012.
*For correspondence (e-mail:j Schroeder@ucsd.edu).
These authors contributed equally.

SUMMARY

Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kbp) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M3 seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRG) mutants. Two nrc1 mutants, nrc1 and nrc2, were mapped, cloned, and further characterized. The nrc1 mutation was mapped to the \( \gamma \)-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione depletion, are necessary to induce the transcription of sulfate assimilation genes during early cadmium stress.

Keywords: glutathione biosynthesis, heavy metal, \( \gamma \)-glutamylcysteine synthetase, metabolite-based cloning, phytochelatin, Arabidopsis thaliana.

INTRODUCTION

Toxic metals such as lead, cadmium (Cd), mercury and the metalloid arsenic can accumulate in soils and water to levels that are detrimental to human and environmental health. Many human disorders have been attributed to the ingestion of heavy metals, including learning disabilities in children, dementia, impairment of bone metabolism and increased cancer rates (Tong et al., 2002; Allen et al., 2002; Aschner and Walker, 2002; Ohta et al., 2002; Yu et al., 2002; Walsberg et al., 2003; Heck et al., 2009; Satarug et al., 2010). Food crops are a major source of heavy metal intake in humans,
which has prompted interest in understanding how plants take up, detoxify and retain heavy metals. In addition, plants hold the potential for the development of a cost-effective approach for the removal and remediation of heavy metal-laden soils and water through the use of metal-hyperaccumulating plants (phytoremediation) (Raskin et al., 1994; Dushenkov et al., 1995; Seif et al., 1995, 1998; Clemens, 2006).

Metal trafficking, both within the cell and between different tissues, often requires the use of metal ligand molecules such as citrate, nicotianamine, glutathione (GSH) and phytochelatins (PCs) (Lee et al., 1978; Grill et al., 1985; Howden et al., 1995; Kramer et al., 2000; Sanchez-Fernandez et al., 2001; Klein et al., 2002; Richau et al., 2005; Mendoza-Cozatl et al., 2011). Glutathione is a crucial molecule required for the synthesis of PCs, which detoxify mercury, Cd and the metalloid arsenic. PCs are small glutathione polymers synthesized in the cytosol (Grill et al., 1985; Clemens et al., 1999, 2001; Ha et al., 1999; Veitamanuk et al., 1999, 2001). PCs bind highly toxic heavy metals and metalloids, and transport them into the vacuoles by ABC transporters (Li et al., 2004; Chen et al., 2006; Mendoza-Cozatl et al., 2010; Song et al., 2010). Glutathione and PCs have been shown to undergo long-distance transport of Cd through the phloem, but the identities of these transporters remain unknown (Gong et al., 2003; Chen et al., 2006; Mendoza-Cozatl et al., 2008). Thus, exposure to heavy metals can rapidly deplete glutathione levels and create an extremely high demand for glutathione.

At the transcriptional level, heavy metal exposure elicits a robust gene expression response in plants (Herbert et al., 2006; Weber et al., 2006). For instance, Cd exposure rapidly depletes cells of GSH, which in turn induces transcripts that encode sulfate uptake, sulfate assimilation and glutathione biosynthesis mechanisms (Lee and Leustek, 1999; Noort et al., 2006; Davidson and Kopriva, 2010). These findings have led to the development of a metabolite demand-driven model for the regulation of sulfate assimilation and glutathione biosynthesis in which heavy metal-induced GSH depletion induces gene expression (Vauclare et al., 2002; Kopriva, 2006). However, the molecular mechanisms that trigger rapid changes in gene expression following heavy metal exposure in plants remain unknown.

To uncover the molecular and genetic mechanisms that mediate rapid Cd-induced gene expression in Arabidopsis, we have pursued Cd-induced microarray experiments and a forward genetic screen to identify mutants with altered responses to Cd exposure, using a Cd-inducible promoter driving the expression of the firefly luciferase gene. Unexpectedly, two of the mutants showing a dramatically decreased Cd response are impaired in steps upstream of GSH synthesis. HPLC-MS analyses of thiol compounds suggest that upstream thiols and an oxidative redox state functions in the induction of sulfate uptake genes during Cd exposure, and not during GSH depletion alone. Characterization of the transcriptional response to Cd in these mutants revealed a new level of regulation (hierarchical regulation) of sulfate assimilation signaling and glutathione biosynthesis in response to Cd exposure in plants.

RESULTS

Identification of a rapid cadmium-inducible promoter

To identify genes in Arabidopsis that are highly and rapidly induced by Cd, we performed oligonucleotide chip-microarray experiments (Affymetrix, ATH1) on 1-week-old Arabidopsis seedlings exposed to 200 μM CdCl₂ for 6 h (Table S1). Cd-inducible transcripts were identified (Table S1) and transcriptional activation following Cd exposure was confirmed for six strongly induced transcripts by RT-PCR (Figure 1a). Nine promoter-luciferase constructs containing 2.2-kb promoter fragments of the cadmium-inducible genes were introduced into Arabidopsis (Col-0), and stable T₅ homozygous seedlings were analyzed for cadmium-induced luminescence. Luciferase (LUC) reporter lines carrying the high-affinity sulfate transporter SULTR1;2 promoter (pSULTR1;2) showed a quantitative and highly reproducible luciferase response to Cd, and one line (line A) was chosen for mutagenesis (Figure 1b). This pSULTR1;2:LUC reporter line will henceforth be referred to as the control reporter line or parental line.

pSULTR1;2:LUC is induced by cadmium, arsenate and copper, but not by exogenous reactive oxygen species

The dynamic response of 4 reporter lines was analyzed over a 12-h period following Cd exposure (Figure 1b,c). Luciferase activity was highest in roots, and the induction was evident after 1 h of Cd exposure, reaching a maximum after 3 h of exposure (Figure 1b) and decreasing steadily to half of the maximal induction after 12 h of Cd exposure (Figure 1c). To determine if the SULTR1;2 promoter is induced broadly by metals or exogenous reactive oxygen species (ROS), luciferase induction was measured following exposure to arsenate, copper, aluminum, nickel, cobalt and the ROS-inducing agent paraquat (Figure 1d). Figure 1 shows that Cd (Figure 1c), arsenate (Figure 1d) and copper (Figure 1e) elicit a strong transcriptional response, whereas the remaining metals and paraquat showed limited or no induction during the 12-h exposure period. These results suggest that SULTR1;2 is not broadly induced by oxidative stress and that the SULTR1;2 induction line is a suitable parental line for a forward genetic screen to identify mutants with an impaired Cd-induced transcriptional response.

Seeds of the control reporter line were ethyl methane-sulfonate (EMS) -mutagenized (approximately 6000 seeds), and 60 200 M₃ seedlings were screened for altered luciferase induction after 6 h of Cd exposure. Putative mutants were selected and the altered luciferase response was

© 2012 The Authors
confirmed in M_{2} seedlings (Figure 2f). Mutants were classified into one of three different groups: (i) constitutive response without Cd (LRC0) mutants, showing a constitutive luciferase induction (Figure 2b) without being exposed to Cd; (ii) super response to Cd (SRC) mutants, which showed higher luciferase activity compared with the control reporter lines following Cd exposure (Figure 2c); (iii) non-response or reduced response to Cd (NRC) mutants, which failed to induce strong luciferase activity after Cd exposure (Figure 2d,e).

Glutathione-deficient mutants show reduced luciferase induction during Cd exposure

We focused on characterization of two recessive non-response mutants, designated non-response to cadmium 1 and 2 (nnc1 and nnc2), which are Cd sensitive and have short roots when grown in the presence of Cd. Figure 2(d,e) shows the luciferase phenotype of the nnc1 and nnc2 mutants. To validate the decreased luciferase response of the nnc1 and nnc2 mutants, RT-PCR analysis of the native SULTR1;2 gene was performed in the control and in the nnc1 and nnc2 mutants. Figure 2(h,i) shows that the induction of the SULTR1;2 transcript in nnc1 was severely decreased compared with the control reporter line (Figure 2f), but only moderately decreased in the nnc2 mutant (Figure 2h). The reduced size of nnc2 seedlings probably contributed to the difference between the measured decreases in luciferase response in the nnc2 mutant, with a moderate decrease in SULTR1;2 transcript level in the nnc2 mutant. Thus, the nnc1 mutant is a strong non-response mutant, whereas the nnc2 mutant, which retains some SULTR1;2 induction, is more accurately described as a reduced response mutant. Root elongation experiments on plates containing 20 μM CdCl_{2} showed that nnc1 and nnc2 seedlings are Cd hypersensitive (Figure 2g,i). Crosses between nnc2 and nnc1 showed that they are non-allelic.

The organic thiols cysteine, γ-glutamylcysteine (γ-EC) and GSH are known to be key metabolites required for the production of PCDs that mediate Cd detoxification. Therefore, we analyzed the metabolic thiol profile of the nnc1 and nnc2 mutants by fluorescence HPLC coupled to a mass spectrometer (HPLC-MS) (Figure 3a–f). After exposure to 20 μM Cd for 48 h, GSH levels were decreased in both the nnc1 (44.8 ± 2.91 nmol GSH per g fresh weight) and the nnc2 (94.9 ± 8.22 nmol GSH per g fresh weight) mutants compared with parental controls (126.2 nmol GSH per g fresh weight; Figure 3a–c,f). Conversely, cysteine levels in the nnc1 (66.6 ± 8.19 nmol Cys per g fresh weight) and nnc2 (51.3 ± 8.93 nmol Cys per g fresh weight) mutants in the presence of Cd were elevated compared with parental controls (11.8 ± 0.71 nmol Cys per g fresh weight; Figure 3a–d). Interestingly, γ-EC levels were decreased

© 2012 The Authors
following Cd exposure in the nrc1 mutant (2.30 ± 0.40 nmol γ-EC per g fresh weight), and were elevated in the nrc2 mutant (451.7 ± 72.7 nmol γ-EC per g fresh weight), compared with parental controls (8.57 ± 0.26 nmol γ-EC per g fresh weight; Figure 3a-e).

Physical mapping and characterization of the nrc1 and nrc2 mutants

Our HPLC-MS findings suggest that nrc1 inefficiently converts cysteine into γ-EC, the precursor of γ-EC, the precursor of γ-EC, and γ-EC biosynthesis from sulfur assimilation and GSH synthesis from this mapping region were PCR-amplified and sequenced. The locus At4g23100 contained a single C → T mutation in the fourth exon causing a Pro → Leu (P214L) change in the amino acid sequence of γ-EC synthetase (γ-ECs), a key enzyme in glutathione biosynthesis (Figure 4a).

To further determine whether this mutation in γ-ECs was responsible for the nrc1 phenotype, nrc1 was crossed into the previously characterized γ-ECs allele, cod2-1 (Howden et al., 1995) (Figure 4b). F1 seedlings from the reciprocal crosses between the recessive nrc1 and cod2-1 mutants were Cd hypersensitive, as determined by root elongation assays in the presence of cadmium (Figure 4b). In contrast, in the presence of Cd, seedlings from crosses of wild-type Col-0 (WT) and nrc1 or cod2-1 were not Cd hypersensitive (Figure 4b). These results show that nrc1 is allelic to cod2-1.

To further compare the nrc1 allele with the cod2-1 allele, we compared the γ-ECs activity in protein extracts obtained from the two mutants versus the activity of γ-ECs in WT extracts. Using HPLC-MS to determine the initial rates of activity of γ-ECs, we determined that WT extracts synthesizes γ-EC at a rate of 74 pmol·h⁻¹·mg protein⁻¹, whereas nrc1 and
Figure 3. Time course of ncr1 and ncr2 non-response mutants reveals enhanced cysteine levels in ncr7 and enhanced γ-EC levels in ncr2. Fluorescence HPLC-MS was used to identify and quantify these isotypes.
(a) In control plants; (b) in the ncr7 mutant; (c) in the ncr2 mutant.
(d) Cysteine quantification using HPLC-MS revealed a five-to-sixfold accumulation of cysteine in both the ncr7 and ncr2 mutants relative to the control following treatment with cadmium.
(e) Fluorescence HPLC-MS also revealed an approximately 16-fold accumulation of γ-glutamylcysteine in ncr2 relative to the control and a depletion of γ-EC in the ncr1 mutant (approximately 26% of wildtype levels).
(f) Glutathione quantification using HPLC-MS revealed that both the ncr1 and ncr2 mutants are GSH deficient. All bar graphs show the mean of between three and six independent samples. Error bars represent the standard error of the mean (SEM).

cad2-1 synthesizes γ-EC at a rate of 13 pmol - SH min⁻¹ mg protein⁻¹ (17.98% of the WT rate) and 14 pmol - SH min⁻¹ mg protein⁻¹ (18.91% of the WT rate), respectively (Figure 4b). These results suggest that the point mutation in ncr1 is as severe as the 6-bp deletion found in the cad2-1 mutant. To further confirm the causative mutation in the ncr1 mutant, we expressed the genomic γ-ECS gene, beginning with the start codon and excluding the 5' and 3' untranslated regions (UTRs), ectopically behind the CaMV 35S promoter in the ncr1 mutant background. Three independent transformant lines (γ-ECS-Comp1-γ-ECS-Comp3) were selected and T3 seedlings from these lines were used for root elongation studies and fluorescence HPLC-MS. Ectopic expression of γ-ECS in the ncr1 mutant background rescued the Cd-sensitive root growth phenotype of the ncr1 mutant (Figure 4d), and greatly decreased the cysteine accumulation phenotype (Figure 4e). Taken together, these results support the conclusion that the identified mutation in γ-ECS is the causative mutation in the ncr1 mutant.

Our HPLC-MS results also suggest that ncr2 inefficiently converts γ-EC into GSH (Figure 3a,c,f). Genetic mapping using an F2 population of an ncr2 x Landsberg erecta (Le)
Figure 4. Characterization of the non-responsive to cadmium mutant mnc1.
(a) Mapping of the mnc1 mutant placed the mutation on chromosome 4 between the cle5 and ngs1107 markers. Candidate gene sequencing identified a point mutation in Abag273900, which causes a Pro→Leu (P234L) change in the γ-glutamylcysteine synthetase protein.
(b) Crosses between mnc1 and cad27-1 show the mutants are allelic. The short-root phenotype of the mnc1 and cad27-1 mutants grown on 20 μM cadmium (Cd) is not rescued by the mnc1 x mnc1, in contrast to the cad27-1 x cad27-1, cross, but crossing either mutant into WT restores root elongation in the F2 generation.
(c) mnc1 is deficient in γ-EC synthetase (γ-EC) activity. An in vitro assay was performed to determine the activity of the γ-EC synthetase protein from wild-type WT1, mnc1 and cad27-1 plants. γ-EC synthetase activity was measured by tracking γ-EC appearance using HPLC-MS in crude extract extracts treated obtained from wild-type Col-0 (full circles), mnc1 (full squares) and cad27-1 (empty triangles). Extracts obtained from WT plants showed a steady synthesis of γ-EC during the assay, whereas mnc1 and cad27-1 showed only marginal increase in γ-EC concentration during the assay.
(d) Expression of γ-EC in the mnc1 mutant behind a constitutive promoter restores root elongation on Cd. Three independent T2 transformants Comp1-Comp3 were used for root elongation experiments on 20 μM Cd.
(e) Seven-day-old complementation lines (Comp1-Comp3) were also used for fluorescence HPLC-MS analyses following 48 h of 100 μM Cd treatment. Gamma-glutamylcysteine (γ-EC) levels in the mnc2 mutant are approximately 50-fold higher than in the WT (2.1 ± 1.2 μmol g−1 fresh weight in mnc2 compared with 8.37 ± 0.23 μmol g−1 f fresh weight in WT), whereas all three of the γ-EC complemented (γ-EC) Comp lines show a WT cysteine accumulation. All bar graphs show the mean of between three and six independent samples. Error bars represent the standard error of the mean (SEM).

backcross located the mutation on chromosome 5, between the T21B4 and F15F15 markers (Figure 5a). Based on the thiol profile of mnc2, candidate gene involved in sulfur assimilation and GSH synthesis from this mapping region were PCR amplified and sequenced. The locus A65727390 contained a single C → T mutation in the 10th exon, causing an Ala → Val (A404V) change in the amino acid sequence of glutathione synthetase (GSS), the final enzyme in glutathione biosynthesis (Figure 5a).

No previous visible mutation in the Arabidopsis GSS gene has been identified, and GSS T-DNA insertion mutants have been shown to be seedling lethal (Pasternak et al., 2008). Therefore, to determine whether the GSS point mutation was responsible for the mnc2 mutant phenotype, the genomic GSS gene, beginning from the start codon and excluding the
5’ and 3’ UTR regions, was ectopically expressed behind the CaMV 35S promoter in the nnc2 genetic background. Root elongation using T2 transformant seedlings from three independent transformant lines (GS-Comp1-GS-Comp3) grown on 20 μM Cd confirmed that ectopic expression of the GS gene complemented the Cd-sensitive phenotype in the nnc2 mutant (Figure 5b). Furthermore, 21-day-old soil-grown seedlings appeared less chlorotic than the nnc2 mutant (Figure 5b). Subsequent HPLC-MS analyses of NT, nnc2 and T2 seedlings treated with 20 μM Cd show that γ-EC levels were drastically decreased in the complemented lines (Figure 5c). To determine whether this increase in Cd tolerance was an artifact of ectopic expression of GS, we also transformed WT Col-0 with the same GS construct, and selected independent T2 transformant lines (GS-OX1-GSOX5). RT-PCR analysis was performed to select lines showing an increase in GS transcript (Figure 5d) relative to the WT. We then performed root elongation experiments on 20 μM Cd using these overexpression lines and confirmed that ectopic expression of GS does not increase Cd tolerance compared with wild-type lines (Figure 5e). These findings together provide strong evidence that the nnc2 phenotype is caused by the identified recessive point mutation in GS.

**Sultr1;2 induction is repressed, even when GSH is depleted.**

The transcriptional upregulation of sulfate assimilation genes has been described as being part of the plant response to GSH depletion (e.g., PC synthesis during Cd exposure causing GSH depletion; Rouached et al., 2008; Saito, 2004). In contrast to this model, the nnc1 and nnc2 mutants showed clear GSH depletion (Figure 3d), but failed to produce a strong induction of the SULTR1;2 promoter-driven luciferase reporter (Figure 2d) and the native Sultr1;2 mRNA to wild-type levels after cadmium exposure (Figure 2g). These findings point to an alternative hypothesis that the accumulation of thiol compounds, either as cysteine (Figure 3d) or γ-EC (Figure 3e), represses the induction of SULTR1;2 gene expression during Cd exposure in these mutants, even though GSH levels are reduced (Figure 3f). A possible mechanism mediating this response may be that the thiold-dependent cellular redox state also contributes to the Cd-induced gene expression of Sultr1;2. To test this hypothesis, we conducted thiol feeding experiments in the presence of cysteine or γ-EC added to the growth medium. Figure 6a shows that the addition of cysteine or γ-EC to the growth media attenuates the induction of SULTR1;2 gene expression in response to Cd. From the above experiments, however, it was unclear whether the addition of cysteine or γ-EC repressed the luciferase activity by extracellular Cd chelation, metabolite repression or altered cellular redox state. Therefore, we analyzed whether the addition of cysteine, GSH, DTT (a non-physiological thiol) and the non-thiol reducing agent, butylated hydroxyanisole (BHA), which is not known to chelate Cd (Gulcin et al., 2003), altered the Cd-dependent induction of SULTR1;2 gene expression. As shown in Figure 6b, feeding the non-physiological reducing agents DTT and BHA repressed Cd-induced luciferase activity (Figure 6b) to a similar degree as the metabolites cysteine or GSH (Figure 6b). These results are consistent with a hypothesis where a reducing cellular environment in the nnc1 and nnc2 mutants, caused by cysteine or γ-EC over-accumulation, represses Cd-induced gene expression despite low GSH levels in these mutants. Thus, a reducing cellular environment would have hierarchical control, repressing SULTR1;2 gene induction (Figure 6c). In this experiment, reducing compounds, including the non-physiological reducing agents DTT and BHA, prevent Cd-induced signal transduction, despite the depletion in GSH levels caused by PC production. Furthermore, our results indicate that an increased level of reducing thiols, including cysteine or γ-EC, inhibits Cd-induced Sultr1;2 gene expression in vivo, even when GSH levels are depleted (Figure 6c).

**DISCUSSION.**

A luciferase-based genetic screen was devised using Cd-dependent microarray analysis and the Cd-inducible Sultr1;2 promoter. In Arabidopsis the Sultr1;2 transcript is induced by Cd (Rouached et al., 2006) (Figure 1). Microarray analysis (Table S1), RT-PCR analysis (Figures 1a and 2a) and luciferase imaging (Figure 1b, c) demonstrate that the 2.2-kb SULTR1;2 promoter fragment is a rapid and robust reporter of Cd exposure. Furthermore, we show that the SULTR1;2 promoter fragment is induced by a well-defined set of metals and metalloids (arsenic), but is induced less well by ROS-inducing agents, such as paraquat (Figure 1c–i).

Our Cd-inducible reporter screen allowed us to identify mutants with decreased, constitutive and increased activity of the reporter gene (Figure 2). These classes of mutants suggest that sulfate uptake in Arabidopsis is regulated by antagonistic transcriptional activators and repressors. To date, one transcriptional regulator of SULTR1;2, SLIM1, has been reported and is regulated under sulfur limiting conditions (Murayama-Nakashita et al., 2008). It remains unknown whether SLIM1 functions in the Cd response, and none of our strong nnc mutants mapped to the SLIM1 gene. The components of the Cd-dependent transcriptional signaling pathway in Arabidopsis remain unknown. Isolation and characterization of the Arabidopsis nnc mutants was pursued to advance our understanding of the levels of genetic and mechanistic regulation of the sulfate assimilation pathway that occurs during Cd exposure.

**Current model of sulfur homeostasis and GSH depletion during Cd stress.**

Glutathione is known to be important for mitigating stress as the GSH-deficient mutants cad2-1, pad2, rax1-1 and sin1 have all been identified by their sensitivity to abiotic or biotic
Figure 6. Reducing compounds affect cadmium-dependent induction of the pSULTR1;2::LUC reporter.
(a) Addition of 1 mM cysteine or γEC to the growth media lowers the response of the control pSULTR1;2::LUC reporter to cadmium over a 12 h time course.
(b) Cadmium-dependent induction of the luciferase reporter gene is affected by reducing compounds. Exposure to 100 μM γGCE induces the transcription of the pSULTR1;2::LUC reporter gene (Cu). The addition of the reducing compounds cysteine (Cu + 1 mM Cys) or glutathione (Cu + 1 mM GSH) to the growth media strongly represses the cadmium-induced luciferase activity. The non-physiological reducing agents DTT (Cu + 1 mM DTT) and BHA (Cu + 200 μM BHA) also repressed the induction of the reporter gene, suggesting that changes in the cellular redox state is a factor controlling the expression of the SULTR1;2 gene. All images were quantified after 6 h of exposure to the specified compound.
(c) Schematic representation of putative signals involved in the regulation of the high-affinity sulfite transporter, SULTR1;2, during cadmium stress. Glutathione and cysteine are known to repress SULTR1;2 under many conditions, including sulfur starvation and cadmium stress. Characterization of the nrc1 and nrc2 mutants suggests, however, that both GSH demand and changes in cellular redox are required for GSH-dependent transcriptional changes.

stresses (Cobbe et al., 1998; Ball et al., 2004; Parisy et al., 2007; Shannumugam et al., 2011). Another GSH-deficient mutant, nni, was identified as lacking a root meristem and having a severe growth and developmental phenotype (Vernoux et al., 2000). These mutants display GSH depletion of various degrees, with the nni/mutant having the least GSH (approximately 3% of wild-type levels) and nni-1 having the highest GSH levels (approximately 50% of wild-type levels) (Vernoux et al., 2000; Ball et al., 2004; Shannumugam et al., 2011). Whereas the severity of these mutations is typically linked to the degree of GSH depletion, Shannumugam et al. (2011) have recently shown by systematically analyzing the iron-induced zinc tolerance of each of these mutants that a threshold level of GSH is required for some phenotypes. These results suggest that the phenotypes observed in these mutants may not be linearly correlated with GSH levels alone. Furthermore, the nrc1 × cad2-1 F1 plants (Figure 6b) showed slightly longer root growth than the nrc1 mutant or the cad2-1 mutant alone. This suggests that when the two mutant alleles are expressed together, despite having similar GSH content, the nrc1 × cad2-1 F1 crosses are slightly less sensitive to Cd. One explanation for this observation is that in the nrc1 × cad2-1 cross, the γ-ECS dimer is more functional than in the nrc1 or cad2-1 offspring (Hothorn et al., 2006; Gromes et al., 2008). This would be consistent with recent findings showing that the regulation of γ-ECS in plants is complex and occurs at both the transcriptional and post-transcriptional levels (Hothorn et al., 2006; Gromes et al., 2008).

The current model for sulfur homeostasis in plants proposes that GSH, the most abundant organic thiol in plants, is a strong negative regulator of both sulfate assimilation and cysteine biosynthesis. Glutathione is known to repress the expression and activity of high-affinity sulfate transporters, ATP sulfurylase and APS reductase (Koprive, 2006). Cellular GSH levels decrease during Cd stress as a result of PC production (Rauser, 1995). This GSH depletion causes an increase in cellular GSH demand, increasing the
transcription of sulfate uptake-related genes (i.e., SULTR1;2) (Koppriva and Renneberg, 2004; Koppriva, 2006) (Figure 1). This model argues that as sulfate assimilation restores thiol levels, GSH represses sulfate uptake and assimilation genes (Koppriva and Renneberg, 2004; Koppriva, 2006). Tight regulation of GSH synthesis is needed because of the high reactivity yet essential nature of GSH. Feedback regulation allows the rapid activation of sulfate assimilation during a sudden decrease in GSH levels. This model accounts for many observations, but it assumes that GSH is the major regulator of sulfate assimilation during Cd stress. Growing evidence indicates that cysteine and H₂S are also potent repressors of sulfate transporters; however, it is unclear if cysteine and H₂S repression are direct or mediated through an increase in GSH (Jappapather and Pourdavoud, 2016; Vauclare et al., 2002; Maruyama-Nakashita et al., 2004). Here, by isolating and characterizing mutations that insulate variations in cysteine and γ-glutamylcysteine from changes in GSH concentrations, we show the key role of sulfur-contain-
ing compounds synthesized prior to GSH production in repressing Cd-induced gene expression (Figure 5c).

rrc mutants reveal cysteine and γ-EC as potent SULTR1;2 repressors

The identification and characterization of the rrr1 and rrr2 mutants suggest that another level of Cd-induced gene expression regulation exists. The rrr1 mutant is GSH deficient but accumulates high levels of cysteine (Figure 3b, d), whereas the rrr2 mutant has decreased GSH levels but accumulates high levels of γ-EC (Figure 4c–e). According to the current model, the GSH status of these mutants should induce SULTR1;2, particularly after Cd exposure. Thus, we would expect these mutants to be constitutive or superresponsive mutants (Figure 2). However, in the rrr1 mutant, Cd-induced SULTR1;2 gene expression was strongly repressed, and in the rrr2 mutant, Cd-induced SULTR1;2 gene expression was decreased (Figure 2d, e).

We hypothesized that the aberrant accumulation of thiol compounds in the rrr1 (cysteine) and rrr2 (γ-EC) mutants also caused a reducing reox environment during Cd exposure, leading to a downregulation of SULTR1;2 (Figure 6). Our findings indicate that this reducing cellular state may contribute as a repression mechanism of sulfate assimilation genes in response to Cd stress. Evidence to support this was obtained by feeding experiments with physiological (cysteine and GSH) and non-physiological (DTT and BHA) reducing agents, as well as reducing agents not known to cholate Cd (BHA) (Figure 6b). Interestingly, feeding cysteine, γ-EC or GSH to the pSULTR1;2:LUC parental line lowered the Cd-induced luciferase response (Figure 6b). Furthermore, feeding non-physiological reducing agents such as DTT and BHA also decreased the SULTR1;2 induction during Cd exposure (Figure 6b). These results, together with our thiol profiling of isolated genetic mutants, are inconsistent with a solely GSH depletion-driven model, and point to a model where GSH depletion, upstream thiol concentrations and an oxidized cellular redox state are required to induce sulfate assimilation in Arabidopsis in response to Cd stress (Figure 6c). The elevated cysteine or γ-EC thiol levels and reducing cellular conditions in the rrr1 and rrr2 mutants are proposed to repress the induction of sulfate assimilation genes, despite the low GSH concentrations in the mutants (Figure 3d). Thus, our results suggest that sulfate assimilation in Arabidopsis is controlled in a hierarchical manner by upstream thiols, the redox state of the cell and the concentration of GSH (Figure 6c). However, oxidative stress alone is not sufficient for mediating Cd-induced SULTR1;2 expression. Indeed, oxidizing agents such as paraquat (Figure 1b) and H₂O₂ did not induce SULTR1;2 expression as highly or rapidly as Cd (Figure 1), presumably because they do not cause a decrease in organic thiols despite altering the cellular redox state (Figure 6c).

Regulation of sulfate assimilation and glutathione biosynthesis

The SULTR1;2 transcript is induced by several stresses, including Cd, attack by pathogens and sulfur deprivation (Maruyama-Nakashita et al., 2006). The SULTR1;2 promoter was previously used as a reporter gene to screen for mutants unable to induce genes regulated during sulfur starvation (Maruyama-Nakashita et al., 2005). This screen led to the identification of SLIM1 (EIL3), an ethylene insensitive-like transcription factor that regulates the expression of SULTR1;2 and of genes that mediate glucosinolate synthesis (Maruyama-Nakashita et al., 2008). The SLIM1 protein has been proposed to be a transcriptional activator under conditions of sulfur starvation (Isogai et al., 2009). Presently, there is no direct evidence supporting its role as a transcriptional activator of the SULTR1;2 promoter. To date it is not known whether SLIM1 directly regulates the expression of SULTR1;2 or whether its function is independent of O-acetylserine (a precursor of cysteine) and GSH concentrations (Maruyama-Nakashita et al., 2008). In summary, the isolation and characterization of the non-responsive to Cd mutants rrr1 and rrr2 points to a new model (Figure 6c) for the regulation of gene expression in response to Cd stress, in which several criteria are necessary for Cd-induced gene expression: (i) GSH depletion; (ii) depletion of upstream thiol levels; (iii) an oxidative cellular redox state, which together control the Cd-induced transcription of SULTR1;2.

EXPERIMENTAL PROCEDURES

Arabidopsis accessions

The WT Arabidopsis thaliana ecotypes used for mapping were Columbia (Col-0) and Landsberg erecta (Ler-0). The rrr1 and rrr2 mutants are in the Col-0 genetic background, and the transformant line pSULTR1;2:LUC is also in the Col-0 genetic background.
Plant growth conditions

Seeds were sterilized and plated on plates containing quarter-strength MS standard medium (MS: B5: Sigma-Aldrich, http://www.sigmaaldrich.com, 1 mM 2-(N-morpholino)ethanesulfonic acid (MES), 1% phytagel (Duchefa, http://www.duchefa.com) and the pH adjusted to 6.8 with 1 N KNO3 (Mersereau et al., 2002; Lee et al., 2003). Sterilized nylon mesh with a 200-μm pore size (Spectrum Labs, http://www.spectrumlabs.com) was placed on the surface of the media prior to sowing the seeds. The seeds were then stratified with cold treatment at 4°C for 48 h, and grown under growth room conditions for 6 days (300 μmol·m⁻²·s⁻¹, 70% RH, 16:8-h light at 21°C/8°C dark at 18°C). Seedlings were then transferred to quarter-strength MS, 1× MES and 1% agar plates containing 20 μM CdCl₂.

Construction of cadmium-response luciferase reporter line

Nine Arabidopsis promoters (2.2 kb before the ATG) of genes found to be induced by cadmium were cloned into the p2ZPGK/megaZ.L vector (kindly provided by Dr. Steve Kay) with BamHI and HindIII restriction digestion. The correct orientation of the promoters was confirmed by sequencing the cloned promoter regions in the vector. These nine luciferase constructs were transformed into Arabidopsis and the resulting T₁ homozygous transgenic luciferase plant lines were tested for induction of luciferase protein by monitoring bioluminescence for up to 12 h after exposure to Cd. Of the nine transgenic luciferase reporter lines, several reporter lines containing the promoter of a high-affinity sulfate transporter gene (SULTR1;2) showed the most reproducible induction of luciferase, and were hence selected as the reporter lines for the cadmium transcriptional screening.

Mutant isolation by luciferase luminescence imaging

Homozygous T₂ seedlings of a pSULTR1;2 reporter line were mutagenized with 0.25% EMS for 14 h. The survival of 50% of the mutagenized seeds was confirmed as an indicator of adequate mutagenesis. M₃ seeds were bulk harvested from approximately 6000 M₄ plants and approximately 200 000 seeds were screened for altered luminescence patterns in response to cadmium treatment (200 μM for 6 h). This is between two and four times more than the minimum M₃ population required to find a mutation in any given G.C pair (Lander et al., 2003). For luciferase imaging, the protocol described by Chinnasamy et al. (2002) was followed with the following modifications (Chinnasamy et al., 2002). Seedlings were grown for 12 days horizontally on 36-μm Nitex mesh (Small Parts, Seattle, WA, USA) before being preprayed with 5× luciferin (Promega, http://www.promega.com) 6 h before being transferred to either control or treatment plates in order to minimize non-specific luminescence. After the seedlings were subjected to the spraying of 5× luciferin and incubated for a period of time (as indicated in the results section) before being imaged using a BERTHOLD Nihon-Oki LB981 imaging system (EG&G Berthold, http://www.berthold.com). A 2-min exposure time was used for capturing the bioluminescent images. Luminescence was quantified using BERTHOLD.

Total RNA isolation and RT-PCR analysis

Plant materials were flash frozen in liquid nitrogen immediately after treatments. Plant materials were ground using a pre-chilled mortar and pestle. A 100-μg portion of ground plant powder was used to extract total RNA by using a commercial RNA extraction kit (Qiagen, http://www.qiagen.com) (Sisneri et al., 2006). The quantity and quality of total RNA was recorded using spectrophotometry and gel electrophoresis. A 5-μg portion of total RNA was treated with DNase I (Ambion, now Invitrogen, http://www.invitrogen.com) to remove DNA contamination from total RNA samples. Prior to the reverse-transcription reaction, DNase-treated total RNA was heated to 65°C for 10 min and immediately cooled down in ice to minimize the secondary structures of total RNAs. A 1-μg portion of total RNA was reverse transcribed with a M-MLV reverse transcriptase using a First-Strand cDNA kit (GE Healthcare, http://www.gehealthcare.com) for 60 min at 37°C. Reverse-transcribed cDNA was subjected to PCR to amplify the expression signal of each gene, with the following typical conditions: initial denaturation of cDNA/RNA and inactivation of reverse transcriptase at 96°C for 5 min, then DNA amplification with 25–40 cycles of 94°C for 1 s, 52°C for 15 s, 72°C for 1 min, then a final extension at 72°C for 6 min using an MJ Research PTC 100 Thermal Cycler (MJ). http://www.mgen-inc.com). As a loading control, elongation factor-1α (EF-1α) mRNA was analyzed. Table S2 contains a complete list of all primers used in this study.

Third measurements by fluorescein HPLC

Thiol-containing compounds in plant samples, including cysteine, γEC, GSH and PCs, were analyzed using fluorescence detection HPLC, as described by Fakhey and Newton (1997). To analyze the levels of thiol compounds produced by plants in response to treatment, plants were grown on minimal growth media plates for 5 days then transferred to fresh media plates containing 200 μM cadmium. In order to minimize the oxidation of thiol compounds during the extraction, plant seedlings were flash-frozen in liquid nitrogen, and then ground and extracted as previously described (Sung et al., 2009). The peaks of thiol compounds were identified by coupled parallel mass spectrometry measurement, as previously described (Chen et al., 2008). and quantified using AECOM (Thermo Scientific, http://www.thermoscientific.com). To identify the peptides from plant extracts, PC2, PC3 and PC4 standards were synthesized on a MILLIGEN 9000 Peptide Synthesizer (Millipore, http://www.millipore.com) using Fluor-Blu ObiB (Bachem, http://www.bachem.com). Other thiol standards, such as glutathione, cysteine, γEC and NAC, were purchased from Sigma-Aldrich. All reported thiol quantities are means of between three and nine biologically independent samples, and error bars indicate the standard error of the mean (SEM).

Plant growth conditions and cadmium treatment

For plate-based assays, including heavy metal treatments, luciferase luminescence assay and plant growth for RT-PCR analysis, seeds were germinated on nylon mesh (Spectrum Laboratories Inc., http://www.spectrumlabs.com) on quarter-strength MS media and grown for 1 week at 22°C, 70% humidity, with a 16:8-h light-dark photoperiod regime at approximately 75 μmol·m⁻²·s⁻¹ light intensity in a Conviron growth chamber (Conviron Environments Inc., http://www.conviron.com). Seedlings on nylon mesh were transferred either to treatment or control plates and incubated for up to 12 h, as previously described (Sung et al., 2009).

Feeding experiments

We performed feeding experiments using the control pSULTR1;2: LUC reporter line (Figure 1). We exposed 6-day-old seedlings to 100 μM Cd, 100 μM Cd + 2600 μM Cys, 100 μM Cd + 2600 μM DTT, 100 μM Cd + 300 μM Mn and 100 μM Cd + 2600 μM GSH for 6 h (Figure 4b), before performing luciferase imaging on the roots and quantifying the relative luciferase luminescence.
Cdc transriptional response in GSH-deficient mutants 783

nrc1 and cad2-1 enzyme activity experiments

The activity of γ-EC3 was measured in protein extracts using HPLC fluorescence and thiol-derivatization with monobromobimane, using a modified version of the protocol described by Heli and Bregman (1995). Rosette leaves from wild-type (Col-0); nrc1 or cad2-1 were ground in liquid nitrogen and 100-300 mg of ground tissue were mixed 1:1 with extraction buffer (100 mm Tris-Cl, 10 mm MgCl2, 10 mm EDTA; pH 8.0). Unless otherwise stated, all steps were carried out at 4°C and all buffers were saturated with nitrogen prior to being used to minimize the oxidation of thiols during protein extraction and enzymatic activity measurements. The protein extract was centrifuged at 10 000 g and the supernatant was desalted using Sephadex G-25 previously equilibrated with extraction buffer. The enzyme activity assay (600 μl final volume) contained 100 mm Tris (pH 8.0), 50 mm MgCl2, 5 mm glutamate, 50 mm ATP and an ATP regenerating system that consisted of 5 mm phosphocreatine, 1 mM DTT and 100 μM of pyruvate kinase. The protein extract was incubated for 10 min at 30°C and γ-EC3 activity was started by adding 1 mM cysteine. At defined time points, 60 μl of the reaction solution were taken and thiols were derivatized by adding 40 μl of monobromobimane (2 mM) and incubated for 20 min at 0°C. Derivatization was stopped by adding 10 μl of PCA 30% w/v. Samples were mixed using a vortex and protein was precipitated by centrifugation (10 000 g at 10 000 g). The supernatant was filtered using 0.45 μm Ultrafree-MC filters (Amicon; Millipore) before being analyzed by HPLC as described previously (Mendzio-Coadi et al. 2008). The quantity of γ-EC3 synthesized over time was normalized to the protein content in the plant extract, quantified using the Bradford reagent (Sigma-Aldrich) and BSA as a protein standard.

nrc1 and nrc2 complementation

All primers used for PCR amplification for cloning are listed in Table S2. For constitutive γ-EC3 expression in the nrc1 mutant, a γ-EC3 genomic DNA fragment was amplified from Col-0 gDNA using the primers Tj199-R and Tj199-R-3224 bp. The amplified genomic γ-EC3 DNA fragment, which excluded both the 5′ and 3′ untranslated regions (UTRs), was cloned into pENTR/D-TOPO® (Invitrogen), following the manufacturer’s instructions. The CaMV 35S-γ-EC3-NOS construct was obtained by recombining the γ-EC3 genomic sequence into a Gateway®-compatible pGreenII plasmid (Hellens et al., 2000) containing the 35S promoter and the NOS terminator (35S-PGW-NOS-L), using LR Clonase II® (Invitrogen). The pGEME- N1 35S-γ-EC3-NOS construct was transformed using electroporation into Agrobacterium tumefaciens strain GV3101.

For constitutive γ-EC3 expression in the cad2-1 mutant, a γ-EC3 genomic DNA fragment was amplified from Col-0 gDNA using the primers Tj199-R and Tj199-R-702 bp. The amplified genomic γ-EC3 DNA fragment, which excluded both the 5′ and 3′ UTRs, was cloned into pENTR/D-TOPO® (Invitrogen), following the manufacturer’s instructions. The CaMV 35S-γ-EC3-NOS construct was obtained by recombining the γ-EC3 genomic sequence into a Gateway®-compatible pGreenII plasmid (Hellens et al., 2000) containing the 35S promoter and the NOS terminator (35S-PGW-NOS-L), using LR Clonase II® (Invitrogen). Note that our attempts to complement nrc2 using a 35S-driven GS-cDNA were not successful, whereas the genomic DNA complemented the nrc2 growth and yellowing phenotype (Figure S1) in six independent lines (all isolated transformants). We tested the complementation of the Cad-dependent root growth and thiol accumulation in three of these lines, as shown in the results section. The pGEME-35S-γ-EC3-NOS construct was transformed using electroporation into Agrobacterium tumefaciens strain GV3101.


Cd transcriptional response in GSH-deficient mutants


Appendix 2:

Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic
Iron, zinc, copper and manganese are essential metals for cellular enzyme functions while cadmium, mercury and the metalloid arsenic lack any biological function. Both, essential metals, at high concentrations, and non-essential metals and metalloids are extremely reactive and toxic. Therefore, plants have acquired specialized mechanisms to sense, transport and maintain essential metals within physiological concentrations and to detoxify non-essential metals and metalloids. This review focuses on the recent identification of transporters that sequester cadmium and arsenic in vacuoles and the mechanisms mediating the partitioning of these metalloids between roots and shoots. We further discuss recent models of phloem-mediated long-distance transport, seed accumulation of Cd and As and recent data demonstrating that plants possess a defined transcriptional response that allows plants to preserve metal homeostasis. This research is instrumental for future engineering of reduced toxic metalloid accumulation in edible crop tissues as well as for improved phytoremediation technologies.

Address
Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92035-0110, USA

Corresponding author: Schroeder
Julian I. (julian@scripps.edu)
1 Present address: Division of Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA

Introduction
The trace metals iron (Fe), zinc (Zn), manganese (Mn) and copper (Cu) are essential to all organisms functioning as co-factors in a variety of enzymes and proteins [1–3]. Metals are intrinsically very reactive and, therefore, their intracellular concentrations must be tightly regulated. Other metals, such as cadmium (Cd), lead (Pb), chromium (Cr), mercury (Hg) and the metalloid arsenic (As) are toxic and biologically non-essential, but can enter plants using the same transporters used for essential nutrient uptake [3–5,6]. Once inside the cell, these toxic non-essential metals can displace and interfere with the function of essential metals. Therefore, organisms have acquired genetic and biochemical mechanisms to sense, transport and maintain essential metals within a non-toxic physiological range (i.e. metal homeostasis), while detoxifying non-essential metals (Figure 1) [1–7].

Here we review recent advances in the identification of key genes mediating accumulation and tolerance to cadmium and arsenic, including the identification of the vascular phytocelatin transporters that remained elusive for more than 15 years [8**–9**]. Transporters contributing to metal partitioning between roots and shoots [10**–11**] and the characterization of vascular metal transporters from hyperaccumulating species [12**–14**]. We will discuss recent data demonstrating that the transcriptional changes induced by exposure to non-essential toxic metals are part of a transcriptional response to preserve metal homeostasis [14].

Identification of the long-sought vascular phytocelatin transporters
Phytocelatin synthesis is perhaps one of the most well-studied mechanisms mediating detoxification of Cd, As, Zn, Hg and Cu in plants and some yeast, including Saccharomyces cerevisiae [3,5,15]. Phytocelatins (PCs) are glutathione-derived peptides synthesized in the cytosol where they form PC-metalloid complexes that are transported into vacuoles, thus removing these toxic elements from the cytosol [3,5,15,16]. More than 15 years ago, research suggested that vascular uptake of PC-metalloid complexes was mediated by ATP-binding cassette transporters (ABC transporters) [17–19]. In 1995, Hmt1 (Heavy metal tolerance 1), a half-size ABC transporter was identified as a vascular PC transporter required for Cd tolerance in the yeast S. pombe [18–19]. However, attempts to identify Hmt1-like transporters in plants were unsuccessful. In fact, the availability of diverse plant genome sequences revealed that in several cases the plant genes with the highest similarity to S. pombe Hmt1 were the half-size ABC transporters of the mitochondria (ATMs) [16] (Supp. Figure 1 and Supp. Table 1).

Notably, the precise mechanism by which Hmt1 confers tolerance to Cd, but not arsenite [As(III)] or arsenate [As(V)] [20,21]. Furthermore, heterologous expression of
Detoxification of Cd and As in plants Mendoza-Cozatl et al. 555

Hmt1 enhances Cd tolerance in Escherichia coli and Saccharomyces cerevisiae, organisms devoid of PCs, suggesting that Hmt1 also mediates tolerance in a PC-independent manner [8*,20,21]. Subsequent analyses in S. pombe demonstrated that vacuoles from the hmt1 mutant still contained a significant amount of PCs, suggesting the existence of additional vacuolar PC transporters [8*,20]. Following a systematic deletion of vacuolar ABC transporters in S. pombe and Arabidopsis, two groups have recently, and independently, identified full-length ABC transporters mediating vacuolar PC uptake in S. pombe (Abc2) and Arabidopsis (NMR1/ABC1 and MRP2/ ABC2, Figure 1) [8*,22,23]. S. pombe Abc2 is able to suppress the cadmium hyper-sensitivity and restore the capacity to accumulate PCs in vacuoles of a mutant devoid of five vacuolar ABC transporters (hmt1 abc1 abc2 abc3 abc4 abc5) [24]. On the other hand, the Arabidopsis double mutant abc1 abc2 is arsenic hyper-sensitive, and vacuoles isolated from this mutant show a dramatic reduction in vacuolar PC-As uptake compared to vacuoles isolated from wild-type plants [25]. Interestingly, ABC1 and ABC2 were previously also described as ABC transporters mediating the sequestration of glutathione-conjugates complexes into plant vacuoles [16,22].

In contrast to Hmt1, a search for related genes in other plant species readily identified ABC2/Abc2-like proteins throughout the plant kingdom including both terrestrial and aquatic plants (Figure 2, Supplementary Table 1). It should be noted, however, that S. pombe Abc2 and Arabidopsis ABC2 share ≈37% identity at the amino acid level, yet they perform similar functions. Functional analysis together with sequence-similarity searches should be used to positively identify vacuolar PC transporters in other organisms. The overlapping function of ABC1 and ABC2 in Arabidopsis also explains why forward genetic screens did not identify these transporters. The identification of ABC1/2 and Abc1/2 transporters, which belong to a subfamily of ABC transporters different from Hmt1, marks the end of the long-standing search for the genetic identity of vacuolar PC-metal(loid) transporters.

The mechanism by which Hmt1 confers Cd tolerance is not fully understood. Hmt1 function is GSH-dependent, but at this point it is unclear whether Cd-GSH is one of the Hmt1 substrates or GSH is required to synthesize a more chemically complex substrate [8*,21]. Hmt1 is structurally related to Atm1, which is also a GSH-dependent half-size ABC transporter that exports FeS clusters from the mitochondrial matrix to the cytosol [23,24]. A recent characterization of the cadmium tolerance mediated by Hmt1 in S. cerevisiae and S. pombe suggested that Hmt1 may transport CdS clusters from the cytosol into vacuoles [25] and that either GSH or PCs help to stabilize these clusters in a similar way that GSH stabilize FeS clusters in plants and bacteria [25,26]. Detoxification of GSH-coated CdS clusters would explain why Hmt1 can confer Cd tolerance in organisms devoid of PCs [8*].

Long-distance transport of cadmium and arsenic Distribution of cadmium and arsenic between roots and shoots is a dynamic process driven by root plasma membrane transporters, xylem-loading/unloading and phloem-loading/unloading processes [27-29,30,31,32]. Uptake of metals and arsenic into roots and the xylem has been extensively studied (reviewed by [4,5]). Briefly, Zn and Cd are taken up by ZIP transporters and are loaded into the xylem by the Heavy Metal ATPases HMA2 and HMA4 (Figure 1). Arsenate [As(V)] is taken up and loaded into the xylem by phosphate transporters [33] while arsenite [As(III)] uptake and translocation are mediated by members of the NIP subfamily of aquaporins [4,5].

Phloem transport, on the other hand, has been less studied, perhaps due to the technical challenges associated with phloem sampling [34,35]. However, transport through the phloem plays a key role in delivering nutrients, including metals, to developing seeds where xylem-mediated transport plays a minor role due to the limited transpiration rate within reproductive tissues [36]. Therefore, understanding the phloem transport mechanisms is important to restrict the transport of toxic non-essential metals into (edible) seeds while ensuring the accumulation of essential nutrient metals. Analyses from various plant species have shown that the main metal–ligand molecules found in phloem sap are nicotianamine, GSH and PCs [27,30,37,38]. Nicotiamamine has been shown to form complexes with Pb, Co, Zn and Mn [38–40], while GSH and PCs have orders of magnitude higher affinities for the metalloids Cd, Zn, Hg and As[III] [27,41]. Furthermore, extended X-ray absorption fine structure (EXAFS) analysis of seeds in the Cd hyperaccumulator Thlaspi praecox shows that 60% of Cd is co-ordinated with thiol-containing ligands (Figure 1) [42]. The finding of PCs in phloem sap [27] was unexpected since PCs have long been considered molecules that mediate the transport of metals from the cytosol into vacuoles. However, research revealed long-distance PC transport [43] and liquid chromatography–mass spectrometry analyses revealed high levels of PCs in the phloem sap of Brassica napus [27]. Furthermore, energy-dispersive X-ray microanalysis (EDXMA) in A. thaliana found significant levels of Cd and sulfur-Cd complexes in the cytoplasm of companion cells (phloem-loading cells) [37], suggesting that thios mediate long-distance transport of metalloids into the phloem. The plasma membrane transporters that load PC-metal(loid) complexes into the phloem remain unknown (Figure 1), but cell-specific transcriptome analyses in A. thaliana show that phytochelatin synthase (PChS, At5g44070) is most highly expressed in companion cells (phloem-loading cells) (44*, Supp. Figure 2A). Companion cells and sieve elements (phloem) are connected through highly permeable plasmodesmata.
Maximum likelihood phylogenetic tree of ABCC2 and ABC-type transporters showing the highest sequence similarity to ABCC2 in higher plants and selected fungi and animals. ABC transporters fall into two main clades characteristic for plants and animal or fungi [76–79]. The only functionally characterized vascular phytocellulose transporters shown are A. thaliana ABC2 and S. crombiei ABC2 [80–82]. A detailed explanation for gene annotations is provided in Supplementary Table 1. Note that the following organisms lack phytocellulose: P. patens, S. commune, and D. melanogaster. The tree was constructed using phyml with 100 bootstrap replicates on a protein curated multi-alignment of the shown proteins [76–79]. Nodes labeled with two asterisks have a 100% bootstrap support while those with one asterisk have a support in the range of 80–100%. The scale bar indicates 0.2 substitutions per site.

(Figure 1 Legend) Uptake, sequestration and long-distance cadmium and arsenic transport mechanisms in plants. (a) Cadmium (Cd²⁺) uptake at the root level, is mediated by ZIP transporters (i.e. GRT1 transporter) and other divalent metal/nutrient transporters. Arsenic, depending on the redox state [As(V) or As(III)], may be taken up by phosphate transporters [As(V)] [33] or nodulin 26-like proteins [As(III)] [4–5]. Once inside the cell As(V) is readily reduced to As(III). Cd²⁺ and As(III) induce phytochelatin (PC) synthesis in the cytosol and PC-metal(II) complexes are sequestered into vacuoles by ABCC transporters (ABCC1 and ABCC2 in Arabidopsis [9]). ABCC1 and ABCC2 can also transport GS-X conjugates into vacuoles [10]. Cd²⁺ can also be sequestered into vacuoles by HMA3 and proton/cation exchange transporters (CAX-type transporters). Cadmium can also be released from the vacuole by HMA4P-type transporters [72–73]. (b) Loading of Cd²⁺ into the xylem for root-to-shoot transport of Cd²⁺ is mediated by the ATPases HMA2 and HMA4 [58,60]. Similar to root uptake, NPP-like transporters mediate As(III) loading into the xylem while phosphate transporters mediate loading of As(V) [4–5]. (c) As(III) may also be reduced in leaves to As(III). Phytochelatins induced by Cd²⁺ or As(III) in leaves are transported into vacuoles by ABC transporters. Similar to root vacuoles, Cd uptake is also mediated by CAX-type and MTP-type transporters [6–5]. Depending on the species, metalloid(s) may be accumulated in epidermal or mesophyll cells [4]. (d) If Cd²⁺ and As(III) are not fully sequestered in leaf vacuoles, they can reach phloem parenchyma and companion cells through plasmodesmata (symplastic transport). Because of the high permeability of companion cells and sieve element plasmodesmata, GSH, As(III)-induced or Cd-induced PCs synthesized in companion cells may enter the phloem shown symplastically and be transported from source-to-sink (i.e. to young leaves, seeds and roots) [33]. (e) EXAFS analysis in the Cd hyperaccumulator Potanthe praeter showed that 65% of Cd in seeds is complexed with thiol-containing compounds [42] and a similar mechanism was also proposed for arsenic accumulation in rice grains [75].
558 Cell signalling and gene regulation

[35]. Therefore, compounds synthesized in companion cells, or transported into companion cells such as GSH or PCs, are likely to enter the phloem for further transport into sink tissues (e.g. seeds and roots; Figure 1) [35,45,47]. We have analyzed low molecular weight tripeptides in Arabidopsis seeds and found significant levels of GSH but not PCs (Mendoza-Cozatl, Schroeder, unpublished). This suggests that thiold-Cd detection in seeds [42] may result from glutathione-Cd conjugates and that PC-Cd complexes loaded into the phloem are more likely to be sequestered in root (sink) vacuoles by the phytochelatin transporters ABCG1 and ABCG2. Notably, ABCG1 and ABCG2 transcript levels are expressed on average 3-fold higher in roots compared to shoots (44**, Supp. Figure 2B).

But why are PCs transported through the phloem? The current model suggests that PCs may contribute to the movement of toxic metals out of the shoots where they could impair photosynthesis [27,37]. The movement of Na⁺ and K⁺ from shoots to roots has also been observed [48]. Such re-circulating mechanisms would limit the accumulation of metals in shoots. In rice, it has been suggested that Cd could be transferred directly from the xylem into the phloem at the nodes without being unloaded into leaf blades [31***]. An important consequence of this phloem-mediated transport of toxic elements is that they will be available for accumulation in seeds during the seed-filling stage. Understanding the mechanisms of metal(loid) loading into companion cells, phloem unloading and seed filling and whether these mechanisms are differentially regulated during the vegetative to flowering transition could help to ensure a high nutritional value of fruits, seeds and grains by reducing toxic metal(loid) accumulation.

Mechanisms contributing to hyperaccumulation of cadmium and arsenic

Plants considered cadmium or arsenic hyperaccumulators have the capacity to tolerate high concentrations of cadmium or arsenic while accumulating a significant fraction of these toxic elements in shoots. PCs mediate the detoxification of Cd, As, and Hg, and plants deficient in PC synthesis are highly sensitive to these metal(loids). Hyperaccumulators seem to combine PC-dependent mechanisms with additional mechanisms to enhance their tolerance and accumulation capacity [4,49]. Metal hyperaccumulation has been associated with the following four key processes: first, enhanced metal(loid) uptake in roots, second, reduced sequestration of metals in root vacuoles, third, enhanced root-to-shoot translocation, and fourth, enhanced sequestration of metals in shoot vacuoles (Figure 1) [4,5,12,**,13***]. The physiology of metal hyperaccumulation has been previously reviewed [4] and several publications have described transcriptional differences between hyperaccumulator and non-hyperaccumulator species [4,49-52]. Of particular interest for this review is the recent identification of ACR3 as a vacuolar AstIII transporter in fern [13***] and the characterization of HMA3 in the Cd hyperaccumulator Noccaea carludensis (formerly Thlaspi carludensis) [12**]. The fern Pieris rapae has demonstrated the ability to tolerate and hyper-accumulate arsenic in fronds (reviewed by [53]). The isolation of ACR3, a vacuolar transporter that enhances AstIII tolerance and accumulation in fern was recently reported [13***]. RNAi studies showed that fern with reduced expression of ACR3 were AstIII hyperresponsive. On the other hand, HMA3 is a vacuolar Heavy Metal ATPase that was identified as highly expressed in the Cd/Zn hyperaccumulator Arabidopsis halleri compared to its close relative and non-hyperaccumulator A. thaliana [51]. Interestingly, HMA3 in A. thaliana (ecotype Col) is a pseudogene, containing a premature stop codon [54,55]. However, HMA3 is functional in the WS ecotype and its deletion promotes Cd sensitivity [54]. Furthermore, HMA3 over expression enhances tolerance and accumulation of Zn and Cd in the WS background [54]. HMA3 was also recently found to be responsible for differences in Cd accumulation in grains of two varieties of rice [10**]. Loss of HMA3 in roots facilitates root-to-shoot translocation of Cd resulting in an enhanced accumulation of Cd in rice grains. HMA3 was also recently found to be a determinant for Cd hyperaccumulation in Noccaea carludensis. The ecotype Ganges shows enhanced tolerance and accumulation of Cd compared to the Prayon ecotype and a major difference between these two ecotypes is a severalfold increase in the expression of HMA3 throughout the plant [12]. Expression of TrHMA3 in Arabidopsis significantly enhances the accumulation of Cd and to a lesser extent Zn [12]. Identification of HMA3 as a novel contributor to the hyperaccumulator phenotype offers a new strategy to increase cadmium tolerance and accumulation capacity of non-hyperaccumulating plants to improve current phytoextraction strategies. The engineering of plants with higher content of essential metals to enhance their nutritional value or higher accumulation of toxic metals for phytoextraction purposes will also require a detailed flux analysis of the metabolic pathways mediating tolerance (i.e. thiold biosynthesis, together with the simultaneous expression of thiold-metal and metal transporters to manipulate tolerance, accumulation and allocation of metals throughout the plant [56,57].

Transcriptional regulation mediated by cadmium and arsenic

Plants exposed to toxic metals or to elevated concentrations of essential metals display significant changes in gene expression that allow them to survive suboptimal growth conditions. The regulatory mechanisms, transcription factors (TFs), and networks mediating these transcriptional responses remain largely unknown. The only transcription factor that has been shown to play a direct role in a Cd-induced transcriptional response
in plants is the wheat gene TaHMA4a [38**,41]. This heat-shock transcription factor was shown to up regulate metallothioneins (MT’s) following Cd exposure in both yeast and rice. Specific residues in the DNA binding motif of TaHMA4a were shown to be critical for Cd-dependent regulation of MT’s and are highly conserved in monocot species but are not present in Arabidopsis and other dicot species [51**,41]. Thus, the transcriptional regulators important for metalloid-induced transcriptional responses in dicots, including Arabidopsis, and metalloid hyperaccumulating species remain elusive.

A limited number of transcriptional profiling studies in Arabidopsis have shed light on the transcriptional networks that are affected by Cd and As exposure. Time course experiments using low (5 μM) and high (50 μM) Cd treatments revealed that rapid Cd-induced gene expression was not correlated with Cd accumulation in the tissues analyzed [14]. These studies also show that Cd-induced gene regulation affects a broad functional range of genes. Within hours of Cd exposure many genes involved in photosynthesis and glutathione biosynthesis were downregulated, while genes involved in sulfur metabolism, cell wall metabolism, and phenylpropanoid metabolism are rapidly induced [14,52]. Transcriptional regulators controlling the sulfur-limitation response were not identified in these studies despite a partial overlap between Cd and sulfur deficiency signaling [14,59-61].

As discussed above, Heavy Metal ATPases (HMA) have been identified as key transporters mediating translocation and storage of Cd and Zn (Figure 1) [54,62,63]. However, it remains unknown how these transporters are regulated at the transcriptional level. Compared to A. thaliana, A. halleri contains two additional copies of the HMA4 gene as well as numerous alterations in the promoter element leading to higher expression compared to A. thaliana [62,64]. In contrast to AhHMA4, AhHMA3 has a very low transcript level and is only slightly up regulated by Cd exposure in A. halleri [50,51,65]. However, the A. halleri ortholog AhHMA3 shows higher expression and is up regulated by Cd exposure [50,51,65]. These differences suggest that HMA genes are regulated at the transcriptional level but the Cd-induced response pathway and the TFs mediating this Cd-induced expression have yet to be identified.

Another transporter that is highly regulated under Cd stress is the low-affinity nitrate transporter NRT1.8 (At4g23680). NRT1.8 was identified as a nitrate transporter that mediates nitrate removal from xylem sap [11**]. Loss of function NRT1.8 mutants are Cd sensitive and accumulate nitrate in the xylem sap. Furthermore, the nrt1.8-1 mutant accumulates nitrate in roots during Cd exposure compared to the wild-type control [11**]. Microarray experiments identified NRT1.8 as being one of the most highly up regulated transporter genes in roots under Cd stress. The transcript level of this transporter was shown to increase in a concentration-dependent and time-dependent manner after cadmium exposure [11**]. The NRT1.8 transporter is the first gene directly linking nitrogen metabolism to Cd-stress response and supports previous models where nitrogen-containing compounds are partially responsible for the translocation of Cd from roots to shoots through the xylem.

It is also important to note that some genes that mediate Cd tolerance are not regulated at the transcript level by exposure to toxic metalloids. AhABC1 and AhABC2, the recently identified vascular PC transporters, are not induced by As, but are constitutively expressed [9**]. It is thought that this strategy allows for rapid storage and detoxification of these and other toxic xenobiotic compounds in the vacuole [9**].

The signaling pathway responsible for Cd-induced gene expression remains largely unknown. However, it was recently shown that Cd can activate the mitogen-activated protein kinases MAPK3 and MPK6 [66]. This is supported by previous studies showing that the MAPK pathway is important for reactive oxygen species (ROS) signaling [67-69]. Both ROS signaling and nitric oxide (NO) have been implicated as early signals in the Cd signal transduction pathway [70,71]. Thus, the question of how Cd and As cause rapid gene expression and which TFs mediate early Cd and As transcriptional regulation are open questions.

**Concluding remarks**

Metal accumulation and homeostasis require the co-ordination of several processes working simultaneously to regulate uptake, long-distance transport and distribution of metals to different cells and tissues (Figure 1). In recent research, key missing transporters mediating metal and arsenic tolerance, vascular accumulation and distribution in plants have been identified. Since plants and seeds represent the major source of metal intake for humans and livestock, an in-depth understanding of these processes could help to ensure the accumulation of essential nutrient metals and avoid the entry of toxic metals in the food supply. Furthermore, phytoextraction has received significant attention as an improved alternative to physical removal strategies to restore sites contaminated with metals and metalloids. The recently identified mechanisms for vascular detoxification and sequestration of cadmium and arsenic, together with the novel genes discovered in natural metal hyperaccumulator species offer new targets to engineer fast-growing high-biomass producing metal hyperaccumulator organisms. This will likely require the simultaneous increase of metabolic flux through the thiol synthesis pathway [56] together with metalloids and thiol-metalloid transporters to manipulate tolerance, accumulation and allocation of metals within the plant.
Cell signalling and gene regulation

560

Acknowledgements

This research was supported by National Institute of Environmental Health Sciences grant numbers P40 ES004687 and the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences at the U.S. Department of Energy (DE-FG02-13ER16449 (LJS)). TOJ was supported by the USDA-CSREES IGERT Plant Systems Biology Interdisciplinary Graduate Training Program (Grant No. 0534445) DUGC is recipient of a FEW Latin American Fellowship.

Appendix A. Supplementary data


References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

• of special interest
• • of outstanding interest


7. Arribas P, Capelo F, Guinovart D, Bruguera C. Metal resistance in plants: the detection of five (5) GUSs have been historically called ‘‘heavy metals.’’. There is some discussion about whether this term should be replaced by other terms such as trace metals or trace metallic elements. This review explains some of the reasons why the term heavy metal may be misleading or even inaccurate. For simplicity and to avoid further confusion, our review refers only to metals and metaloids and emphasizes which of them are essential for biological functions and which ones are not.


9. The authors use inductively coupled plasma—a mass spectrometry to establish the ‘‘ionome’’ of 12 different Arabidopsis accessions and three recombinant introgression lines. They performed diamant analysis on 17 different elements and compared the results to identify QTLs linked to differences in the ionomic profiles of these accessions. The ionomic data have been made publicly available and is an excellent resource for comparing the impact of both genetics and environmental conditions on the elemental composition of Arabidopsis.


The authors identify a novel vacuolar phytochelatin–cadmium uptake transporter in a subtly different from the previously identified phytochelatin transporter hmt1. In contrast to the hmt1 mutant, which still accumulates a significant amount of phytochelates in vacuoles, the hmt1vac2 double mutant largely removes phytochelatin accumulation in vacuoles. A new function for HMT1 in Cad-S cluster transport is also proposed.


Plant vascular phytochelatin transporters were sought for more than 15 years. In this paper the authors identified two Arabidopsis vacuolar ABC transporters required for arsenic tolerance. In vitro experiments show that ABCG1 and ABCG2 mediate the uptake of PC and PC-Asi complexes into plant vacuoles.


By using QTL mapping, the authors identify a gene responsible for reducing cadmium accumulation in grains of the Japanese rice cultivar. OsHMA3 is expressed at the root tip and as the cultivation showing enhanced expression of functional HMA3 in roots significantly reduces accumulation of cadmium in roots and shoots.


The authors report the functional characterization of NRT18 as a root nodule modulating nitrate influx from the xylem. The mutant was also found to be Cd hyperaccumulator suggesting that nitrate levels in the xylem and distribution in plants play a role in cadmium tolerance.


Thlaspi caerulescens is considered a Cd/Zn hyperaccumulator. The authors show that the enhanced cadmium accumulation of a hyperaccumulating ecotype of T. caerulescens correlates well with an enhanced gene copy and expression of HMA3. Cad/HMA3 is functional in both ecotypes, but the xylem cytoplasm showing higher tolerance and cadmium accumulation. Cad/HMA3 exhibits constitutive expression at higher levels.


In this paper, the authors isolate and characterize two genes from Pteris vittata that are similar to a yeast arsenite efflux transporter. Cytotoxicity analysis shows that one of these genes, ACR1, is essential for arsenite detoxification in the genome and localizes to the toplastic. While toxicologists of this gene are shown to exist in other gymnosperms, it is absent in angiosperms hinting at a possible mechanism for arsenic tolerance in gymnosperms.


Current Opinion in Plant Biology 2011, 14:554-562

www.sciencedirect.com
Detoxification of Cd and As in plants Mendoza-Cazorla et al. 561


11. Using high-resolution inductively coupled plasma mass spectrometry and xylene/xylene exudates from Ricinus communis the authors determine that the predominant chemical form of arsenic in phloem sap was As(III). The authors also found that glutathione and phytochelatins were consistently higher in phloem sap compared to xylem sap.


13. When a position-sensing tissue imaging system, the authors show in real-time the dynamics of cadmium uptake from roots to leaves and grain. The accumulation pattern in nodes and further movement of cadmium into the grain suggest that the nodes are where cadmium is translocated from the xylem to the phloem.


28. Using rhizobiosin immunopurification, the authors generate a cell-specific transcriptome atlas of 13 cell-types in Arabidopsis under control and hypoxic conditions. This paper provides a high-quality dataset to identify genes expressed in particular cells within a specific organ or plant tissues.


562 Cell signalling and gene regulation


A wheat gene that confers tolerance to yeast is discovered in an elegant screen. The genes SfH4a and sH4b are both important for this function.


Current Opinion in Plant Biology 2011; 14:554-562