Abstract
Many scientific disciplines need to locate, digitize, and integrate the collections of historical ecological data that often remain hidden in paper archives. Synthesizing historical and contemporary ecological data with ecosystem models can help researchers understand how species, communities, and landscapes are changing across space and time. Since these data are often stored in multiple collections and in various formats, data integration can be challenging. This paper presents a case study of the digitization of a large historical vegetation survey, i.e., the Wieslander Vegetation Type Mapping (VTM) project in California which highlights the importance of recovering and sharing such datasets. The protocol developed to digitize, georeference, visualize, and share these data is foundational in geospatial concepts, and the VTM project showcases the increasingly important role of geospatial experts in the fields of ecology, history, and other sciences. These methods are flexible, transferable, and broadly applicable to other fields.

Introduction
As current and future challenges around climate change, disease and pest management, and land cover change move to the forefront of policy, planning, and management, there is a need to combine and synthesize diverse streams of historical and contemporary ecological data to better understand the patterns, drivers, and consequences of species, community, and landscape change over time (Beller et al., 2017; Bürgi et al., 2017; Rapacciuolo et al., 2014). Enabling such a long-term perspective in data analysis can be challenging because for most of the 20th century, geographical and ecological records were developed and maintained by individuals or small academic groups, and focused in place and time (Frehner and Braendli, 2006; Michener, 2006). This has been a standard scientific norm but it makes multi-scale, cross-disciplinary research more challenging because important datasets can be difficult to find, retrieve, evaluate and use in multi-scalar ecosystem models (Borgman, 2012; Hampton et al., 2013; Jones et al., 2006; Morrison et al., 2017; Tenopir et al., 2011).

Working with historical ecological data to answer pressing contemporary ecological challenges such as climate and land use change will require developments in data curation, integration, and sharing. Many researchers argue that such activities will require open technologies that facilitate sharing including web services, open standards, and application programming interfaces (APIs), which have the potential to create emergent knowledge through novel combinations of information (Carpenter et al., 2009; Kelly et al., 2016; McIntyre et al., 2015; Peters, 2010; Tingley and Beissinger, 2009).

Methods for the reconstruction of past vegetation abundance and pattern can include biological methods such as dendrochronology or palynology (Egan, 2005), but when biological samples are not available, many researchers use historical map and plot data, as well as other cultural references (Beller et al., 2017; Grossinger et al., 2007; Stein et al., 2010; Whipple et al., 2011) to understand past conditions. In the Eastern and Midwestern United States of America there are extensive archival records, including the General Land Office surveys and other early land surveys (Galatowitsch, 1990; Mladenoff et al., 2002; Schulte and Mladenoff, 2001), but in the North American West these data are less common and the reconstruction of past conditions can be hampered by a relative paucity of vegetation data.

The recovery of historical geographic and ecological data for modern use requires a suite of key concepts including georeferencing, error and uncertainty estimation, spatial data management, cartography and visualization, and integration of data into spatial modeling platforms. These concepts are well known to geospatial experts yet maybe new to other researchers and data managers (Golledge, 2002; Goodchild, 2009). Detailed workflows underpinned by geospatial knowledge and expertise are needed to ensure key concepts and information are preserved. These workflows can then be reproduced to make various historical data collections digital. This “applications” article describes a case study of one important historical vegetation data collection and the protocol and technology used to recover data and make them available for modern ecological analyses. The case study is the California Wieslander Vegetation Type Mapping (VTM) collection (Wieslander, 1935).

The VTM collection, created in the 1920s and 1930s, has been described as “the most important and comprehensive botanical map of a large area ever undertaken anywhere on the Earth’s surface” (Jepson et al., 2000). It was pioneered by Albert E Wieslander, an employee of the Forest Service and former of the Earth’s surface” (Jepson et al., 2000). It was pioneered by Albert E Wieslander, an employee of the Forest Service and
Forest and Range Experiment Station in Berkeley, California. Overall, the collection covers about 16 million ha (160,000 km²) or just over a third of California exclusive of the deserts and large agricultural areas (Kelly et al., 2005). The collection includes over 200 vegetation maps, 18,000 vegetation plots, 3,000 photographs, and over 23,000 plant voucher specimens (Figure 1). It is a detailed, extensive (although not complete), and multi-modal description of the vegetation of California in the early 20th century, and its availability in digital form (vtm.berkeley.edu) presents multiple opportunities to examine, characterize, and understand changes to California landscapes. This paper uses the VTM as a case study for illustrating several key themes including the importance of rescuing historical data; the need for best practices for data digitization, the value of data visualization; data fusion and integration; and the critical role of web based infrastructures for sharing scientific data.

VTM Collection Digitization

During the 2000s, several research groups in California began complementary and comprehensive efforts to digitize the individual parts of the VTM collection; these efforts have since been joined. The methods used to georeference and estimate error and uncertainty although slightly different are standard and comparable. The general workflow developed (scanning analog material, georeferencing, estimation of error, creation of digital database, visualization, and serving of data using a web API) made use of best practices pioneered and enhanced by the geospatial discipline. We describe the process for each part of the VTM collection here.

Vegetation Maps

The original VTM maps were drawn on 1:62,500-scale and 1:125,000-scale U.S. Geological Survey topographic quadrangles from the late 19th and early 20th centuries (Figure 1a). The maps were cut into tiles and mounted on linen canvas for use in the field. The maps were carefully scanned one or two tiles at a time at a standard 300 dpi resolution. VTM tiles were primarily registered to scanned versions of the same topographic maps on which they were drawn, typically first edition 30’ quadrangles from the early 1900s U.S. Coastal Geodetic Survey. Subsequently locational accuracy was tested by registering the VTM maps to 1:24,000-scale USGS Digital Raster Graphic quadrangles on a per-quadrangle basis using multiple tie points per tile to identify a Root Mean Square Error or RMSE (Thorne et al., 2008). Vegetation polygons were traced manually at a resolution in which the traced line was finer than the boundary line it was copying (typically 1/6,000) and the plant species codes recorded within each polygon were transcribed into a GIS database. An automated method for polygon extraction (e.g., Soille and Ansoul, 1990) was not possible due to the variable quality of the vegetation maps. The original VTM plant species codes were linked to historical plant species names and then converted to current scientific nomenclature, and the species in each polygon were assigned to current vegetation and habitat types. This process is detailed in Thorne et al. (2008). The project used the Manual of California Vegetation Types (Sawyer and Keeler-Wolf, 1995), and the California Wildlife Habitat Relationships Models (WHR) (Mayer and Laudenslayer, 1988) for land cover classifications. Once these attributes were added to the maps, they were error-checked and finalized as GIS layers (Thorne et al., 2008). Map georeferencing errors were investigated using the RMSE metric. The RMSE for each quadrangle ranged from 21.7 to 189.6m.

Plot Data

Each VTM plot was rectangular in shape with the longer axis running upslope. The plots were 800 m² in size in forests and 400 m² in scrub and chaparral communities. Information on dominant species, ground surface characteristics, average height of the dominant species, and trees greater than 10 cm in Diameter at Breast Height (DBH)
were tallied by species and diameter class. Information about each plot was recorded manually on paper cards (Figure 1b) and the location of the plot marked on a map. Each plot has a unique identifier based on its topographic quadrangle name, map section, and unique plot number that allows the plot data to be linked to its location on the digitized plot maps. This relational structure was maintained as the plots and plot data were manually entered into the database. To test the plot database for accuracy, 200 randomly selected plots from the digital database were verified with the original datasheets in each field. Incorrect or missing values were counted as errors. Errors in the transcription ranged from 0 to 11.0 percent with an average rate of 1.4 percent. The majority of fields (27 out of 32) had low errors (e.g., less than 2.0 percent).

Plot Maps

Plot locations were marked on 1:62,500-scale and 1:125,000-scale U.S. Geological Survey topographic quadrangles from the late 19th and early 20th centuries (Figure 1c), which had been tiled and mounted on linen canvas for field transport. These were scanned at 600 dpi, one cut tile at a time, and georeferenced to 1:24,000-scale USGS Digital Raster Graphic quadrangles using multiple tie-points per tile. All plot locations were digitized manually and their location attributed to the plot ID. The plot ID was used to join the plot location with the plot data. The total error produced by each step of the process was estimated using the total error formula (Wieczorek et al., 2004). The total error (the square root of the sum of the squared errors) produced by the georeferencing process ranged from 126.9 m to 462.3 m, and each plot is attributed with the total uncertainty as a combination of error resulting from the digitization process and the original quality of the maps. The process is fully described in Kelly et al. (2008).

Herbarium Specimens

The VTM field teams collected herbarium specimens (Figure 1d) for every species recorded on the vegetation maps or in the sample plots (Ertter, 2000). Over 23,000 of the VTM specimens have been digitized and georeferenced through the efforts of the Jepson Herbarium and the Consortia of California Herbaria (CCH). Specimens were originally digitized primarily to township, range, and section centroids, corresponding to an average uncertainty of 805 m (or one-half of a mile). Refinement of VTM specimen mapping based on label locality data beyond township, range, and section is ongoing through digital curation efforts of the holdings of the CCH and the Berkeley Natural History Museum consortium (https://bnhm.berkeley.edu/informatics/collection-databases/).

Photographs, Key Maps, and Metadata

Black and white photographs (9.2 × 13.6 cm) were taken from 1920 to 1941 (Figure 1e and 1f), most of which were keyed directly on to USGS topographical maps using red pen, and marking an arrow to show the vantage point and view of each photo. Each photograph was scanned, and information from captions was entered into a database that is searchable by keyword, genus, and species. The locations of each photograph were georeferenced by (a) measuring the distance and bearing of the known southwest corner of each USGS topographic key map to the marked photograph location on the map and deriving its location; or (b) for photographs lacking a corresponding key map, locations were georeferenced based on their written locality description using the same point-radius methodology as employed for museum specimens (Wieczorek et al., 2004). Uncertainty estimates were based in the first case on the scale of the key map, the size of the location marker, and in the second case on the known uncertainties associated with location data (Wieczorek et al., 2004). These uncertainties ranged from 10 m to over 19 km depending on the method used.

The now-digital version of the VTM collection includes the vegetation maps, vegetation plot locations and associated plot data, photograph locations and, herbarium specimens. There are VTM data features in every county in California, and several areas have relatively high overlap (i.e., density) of VTM data types: for example the central Sierra Nevada forests in Alpine, Tuolumne, and Calaveras Counties, and the central coast woodlands in Santa Barbara, San Luis Obispo, and Ventura Counties (Figure 2e). The range of data types captured through the type specific process outlined above (maps, plots, specimens, photographs) represent a wide variety of

Figure 2. Digital VTM data in California: (a) vegetation maps; (b) vegetation plots; (c) photograph locations; (d) herbarium specimens; and (e) the density per km² for all VTM features.
workflows that cover a large range of common historical ecological data formats (Vellend et al., 2013).

API and Website Development

The first web application that made parts of the VTM collection available to a wider audience was developed in 2004 (Kelly et al., 2005) when online mapping technologies were in their infancy and server performance and hosting costs were large limiting factors. The map portion of the site was originally built using MapServer.org technology. Since then, web mapping has made tremendous technological strides with several key advances (e.g., the release of Google Maps™ API in 2005), enabling more sophisticated searches, visualizations and application development through open Application Programming Interfaces, known as APIs. A web API is an application that serves machine-readable data and functionality to applications that represent the data to users.

All digital spatial VTM data are made available via an open source web-mapping application (http://vtm.berkeley.edu) developed using an open source software stack. The VTM website was built by the Berkeley Geospatial Innovation Facility (http://gif.berkeley.edu) using the Berkeley Ecoinformatics Engine Application Programming Interface (EcoEngine API) (https://ecoengine.berkeley.edu/); a RESTful API approach for serving data in general and the VTM data in particular (Figure 2). A RESTful API allows for common data exchange formats with interoperability between data sources and applications. The EcoEngine API is a gateway to explore and compare species and geospatial data to understand biotic responses to global change. It is a portal to many of the diverse biological and environmental collections housed at UC Berkeley, and part of a network of digitized museum collections used for the study of biodiversity, climate change, and ecosystem change (Pyke and Ehrlich, 2010). In addition to the VTM data, the EcoEngine API serves about 5 million records of museum specimens, field station records, soil and pollen data, sensor readings, as well as biophysical base layers such as past and modeled future climate and land use.

The VTM website accesses the individual parts of the VTM collection – VTM photographs, vegetation maps, plots, and specimen locations (Figure 3) which are stored using PostgreSQL, a relational database that supports storage and analysis geospatial vector data through the PostGIS extension. The website presents a user interface for data exploration, search, visualization, and download. Exploration and search are facilitated through an interactive map interface that allows a user to click on a feature, after which a pop up window displays greater detail about the feature. Data can also be downloaded directly from the site.

Visualizations are critical to our ability to process complex data and to engage users in data understanding and several key open source tools allow for this seamless engagement. The VTM map interface was built using Leaflet (leafletjs.com), a lightweight JavaScript mapping library within which Open Street Map (https://www.openstreetmap.org) base layers are provided (Figure 4). The original vegetation maps display

![Diagram](image)

Figure 3. Schematic of and technology associate with the VTM, HOLOS, and Berkeley EcoEngine API websites. Elements related to the VTM project are shaded gray and have bold italic font.
vibrant color schemes (Figure 1a), but rather than try to replicate this variety, we rendered the GIS version using a simplified standard USGS NLCD land cover color scheme (Fry et al., 2008).

![Vegetation](image)

Figure 4. A screen capture of the VTM website showing an area covering part of Lake Tahoe and the Tahoe National Forest; background colors are vegetation polygons, red dots are plot locations, and black icons are locations of georeferenced photographs. One photograph has been queried by clicking. The map legend is also available by clicking on the legend icon in the lower right corner of the window.

Analysis Using the VTM Data
The VTM maps and associated plot data were an important precursor to prominent state classification systems and mapping surveys such as plant community distributions as described in the California Manual of California Vegetation classification (Sawyer and Keeler-Wolf, 1995), and the State Cooperative Soil-Vegetation Surveys of California (Colwell, 1977). Prior to 2005, selected portions of the original VTM collection were used only when they could be located in libraries and personally digitized. Plot resurvey efforts were conducted in the Tehachapi Mountains (Minnich, 1995), San Diego County (Franklin et al., 2004), and Lassen National Park (Taylor, 2000) to study changes in forest composition and changing fire interactions within both chaparral and forest communities. Non-georeferenced plot data was used to develop vegetation community classification schemes in oak and rangeland communities (Allen et al., 1991; Allen-Diaz and Holzman, 1991), and VTM vegetation maps were used in the interpretation of historical aerial photographs over a 50 year period in the Los Angeles Basin (Freudenberger et al., 1987). Each of these efforts was confined to particular regions or vegetation communities in part due to the difficulty of tracking down and digitizing relevant data. However, since the digitization and sharing of various parts of the collection the scope and scale of research has expanded considerably, demonstrating that web-based infrastructure is key for sharing scientific data. Kelly et al. (2016) provides an overview and map of recent research using the collection. For example, since the release of the digitized plot dataset researchers have been able to perform analysis at the regional (Dobrowski et al., 2011; Dolanc et al., 2013a; Dolanc et al., 2013b) or statewide scale (Fellows and Goulden, 2008; McIntyre et al., 2015). Data digitization and release has also allowed for comparisons of plot data with contemporary ecological data to examine large-scale changes to a range of vascular plants (Crimmins et al., 2011; Crimmins et al., 2013; McIntyre et al., 2015). The availability of the digital dataset has enabled integration with climate scenario modeling to understand biogeographic responses to climate change (Rapacciuolo et al., 2014), and numerous studies have examined possible futures for California vegetation using the VTM plot data (Conlisk et al., 2012; Dobrowski et al., 2011; Swanson et al., 2013) and sophisticated modeling techniques such as Maxent (Phillips et al., 2006) as well as other multi-scale ecosystem models.

One recent example highlights the way in which the open VTM data can be used in ecological research. McIntyre et al. (2015) used the VTM plot data in comparison with modern-day forest inventory data collected by the Forest Service through its Forest Inventory and Analysis (FIA) program. They compared the digitized VTM data to modern FIA data, and examined how tree size class distributions, basal area estimates, and species composition have changed in California over 80 years around the state. They observed changes in tree density, in size class, and in species composition that were correlated with a range of possible climatic explanatory factors, including climate water deficit (CWD).

We have identified underutilized parts of the collection that remain open avenues for investigation. The vegetation maps and plots are the most commonly used parts of the collection with only two published reports focusing on the photography collection. Repeat photography of the now-georeferenced photographs might add to our understanding of landscape and plant community change, and new technologies may aid in this process (Babic et al., 2008; Hannula, 2016). Additionally, there is potential in the synthesis of VTM data: plots and maps, maps and photographs, plots, and specimens. There are several areas in the state where the collections coincide (Figure 2): including in particular the Central Coastal Ranges and the Northern Sierra Nevada.

Due to the historic nature of the dataset, which includes incomplete records and metadata, as well as shifts in protocol and nomenclature, these data present a number of challenges for contemporary researchers who use them. The challenges result from the terminology, methods and technology used at the time of data collection, as well as errors introduced through the digitization process. There are three types of processing required to bring these kinds of historical ecological data to light.

First, use of historical ecological data requires consideration of the historical taxonomy used, as well as consideration of the necessary cross-walking between historical and modern data. The species codes on the maps were created by the Wieslander project and are therefore not standard taxonomic codes which can make identification cryptic (Thorne et al., 2008). Ecological taxonomy has also changed since the early 20th century (Barbour et al., 2007), and confusion resulting from name changes can occur. Further, loss of information can result from deciphering hand written script as well as problematic duplicate coding (e.g., does ‘R’ = Redwood, Red fir, or Rock?). All of these challenges need to be dealt with before direct comparisons to modern data can be trusted.

Second, historical field protocols should be thoroughly understood and may require scaling adjustments. Second, historical field protocols should be thoroughly understood and may require scaling adjustments in order to compare historical data with data derived from modern field collection methods. For example, the VTM crew used four size classes to bin the diameter at breast height of trees recorded in the plot data which requires a simplification of modern Forest Inventory and Analysis (FIA) data to allow comparison (sensu Dolanc et al., 2013a; McIntyre et al., 2015). In contrast, the VTM vegetation maps have a much higher species detail than is provided on modern land cover maps, which requires simplification of the historical data for contemporary analyses (Thorne et al., 2008; Thorne et al., 2013).
The third analytical challenge is the focus of this paper: the georeferencing that underpins the spatial records. The protocols used to digitize and georeference the analog data depended on the lab undertaking the process, and each part of the collection provides some measure or estimate of uncertainty in the final product, based on their protocol. For example, the plot and vegetation data include RMSE measure per quad included in the data as an additional field (Table 1). Such measures are critical for the user (Goodchild et al., 2012). These measures or estimates of uncertainty can guide researchers on the use of the VTM data and other historical datasets. Some uses require highly accurate and precise georeferencing, and others have less stringent requirements; thus having a means to record the uncertainty allows a researcher to assess fitness of use. For example, the total error associated with each plot has been used in guiding field relocation efforts: research fitness of use. For example, the total error associated with each plot has been used in guiding field relocation efforts: research fitness of use.

Discussion
We currently face a dilemma and opportunity in science: we need to locate, digitize and integrate into larger data streams the collections of historical ecological and geographical data that often remain hidden in archives. These challenges require data interoperability, data integration, and frameworks for web-based retrieval, analysis, and visualization of spatially related environmental data based on the integration of distributed data repositories (Frehner and Braendli, 2006; Goodchild et al., 2012; Hampton et al., 2013; Wright and Wang, 2011). Such data and collaboration frameworks have been called for since at least the 1990s (e.g., Davis, 1995). There are many recent examples of frameworks that integrate biological data and museum specimen collections with publicly available scientific data such as climate scenarios, land use, and remotely sensed imagery, and provide tools to promote visualization and in-depth analysis (e.g., Abbott and Broglie, 2005; Beaman and Collinèse, 2012; Rapacciuolo et al., 2017). The EcoEngine is one example of this kind of framework designed to address climate and land cover and land use change which span spatial and temporal dimensions. These kinds of data, visualization and analysis infrastructures expand the potential for large-scale research through the integration and synthesis of data drawn from local data sources as well as global data networks such as GBIF (http://www.gbf.org) or VertNet (http://www.verte.net.org). They also require continued focus on the development of data synthesis methods applied to disparate data from numerous sources and of varying quality (Goodchild et al., 2012). However, once digitized and shared, these historical collections can make key contributions in evaluating change and planning for the future (McClenachan et al., 2015; Vellend et al., 2013).

The digital VTM collection (the plots, maps, photographs and specimens) is still incomplete. The journey from paper collection to open digital data has been a decades-long process that included many dedicated collaborators working in isolation and increasingly together. Parts of the collection were nearly destroyed numerous times over the 20th century (Wieslander, 1986), and locations of portions of the collection remain unknown today. The VTM digitization project is emblematic of many common challenges facing geographers and ecologists who work with data that exist in libraries, field stations, and universities that is not carefully indexed and stored. Much scientific effort is conducted in relatively small projects by individual investigators and research groups, sometimes without adequate indexing or preservation of data, and so these datasets become nearly invisible to scientists and other potential users and is more likely to remain underutilized and eventually lost (Heidorn, 2008; Michener et al., 1997). An examination of the VTM project can contribute to the ongoing discussions in the academy and elsewhere about several key themes: (a) the importance of rescuing historical collections and dark data; (b) the need for best practices for data digitization, including uncertainty estimation; (c) the value of data visualization; (d) the need for data fusion and integration in ecological and spatial modeling; and (e) the critical role of web based infrastructures for sharing scientific data. All of the challenges raised by these themes require geospatial theory as a technological integrator and key analytical platform.

The VTM case study is a cautionary yet encouraging lesson on the importance of recovering and sharing historical data in ecological and geographical analysis: cautionary since parts of the collection have been nearly lost or disposed of several times, yet encouraging since the methods used here might be used to bring more dark data to light. For example, the maps from the State Cooperative Soil-Vegetation Survey of California (Colwell, 1977) that follow from the scope and time period of the VTM surveys have to our knowledge not been digitized and may add to the understanding of California flora in the post-war period. The general workflow developed for the VTM project (e.g., scanning analog material, georeferencing, estimation of error, creation of digital database, visualization, and serving of data available on the WEB API) is broadly generalized to historical ecological data collection and analysis. Parts of this workflow can be conducted through automation (e.g., Verhoeven et al., 2012; Morgan and Gergel, 2012) or manual (Thorne et al., 2008) processes depending on the quality of the original data. Potential for further automation of the workflow we present here rests on the exploration of emerging technologies (e.g., machine learning) from cross-disciplinary fields such as computer science. The VTM surveyors certainly introduced error in marking plots on maps.

Table 1. Summary of spatial error and uncertainty in the VTM digitization processes.

<table>
<thead>
<tr>
<th>VTM Component</th>
<th>Georeferencing Method</th>
<th>Error Metric</th>
<th>Reported/Estimated Uncertainty (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetation Maps</td>
<td>Georeferenced to USGS DRG topographic quadrangles, using collections of tie-points.</td>
<td>RMSE</td>
<td>21.7 - 189.6</td>
</tr>
<tr>
<td>Plot locations</td>
<td>Same as above.</td>
<td>Total Error</td>
<td>126.9 - 462.3</td>
</tr>
<tr>
<td>Photograph locations</td>
<td>Calculated from distance and bearing of each marked point from the southwest corner of basemap.</td>
<td>Estimate based on distance, bearing and size of photo mark</td>
<td>10 - 19,401</td>
</tr>
<tr>
<td>Herbarium specimen locations</td>
<td>Digitized centroid of recorded township, range and section.</td>
<td>Estimate based on size of Section</td>
<td>0 - 805</td>
</tr>
</tbody>
</table>
and delimiting vegetation polygons in the field. Such error is impossible to quantify since no one from the VTM crews remains alive. And while we can never know what is “true” or “correct” with historical data, by providing a transparent estimation of the uncertainty inherent in the final product, we can allow other users to evaluate if and how these data will serve science. In some cases the estimated error might be too significant for a particular purpose. For example, vegetation plots originally located on coarse-scale maps produced before 1898 are particularly problematic (Kelly et al., 2008) and likely will not be accurately relocated. But several contemporary ecological researchers (e.g., Easterday et al., 2016; McIntyre et al., 2015) have found valid uses for the plot data by incorporating the measures of error provided with the data.

Conclusions

There is ample evidence that the rescuing, digitizing, and sharing of historical ecological data is an important scientific endeavor, and we have a “generational imperative” to do so (Morrison et al., 2017). These data provide benchmarks from which to compare change; they can be linked to contemporary ecological data to understand land use legacies and to help predict future changes. The VTM collection has played a significant role in understanding the California flora: past, present and future through its use in vegetation classification, vegetation and land cover change analysis and, modeling of possible future conditions. Rescuing and sharing this historical collection has led to scientific advancement across several disciplines, and serves as an example of the potential that other dark data collections may have. Georeferencing, uncertainty estimation, cross-walking between collection protocols, open source web mapping and API infrastructures as described in this paper are all critical methods that ensure data preservation, quality, reliability, transferability, and synthesis. Each of these pieces have their own associated challenges and necessitate particular skill sets that often require teams of people to complete, and geospatial concepts serve as a technological integrator. Flexible infrastructure such as APIs and web mapping encourage novel combinations of data by lowering the barriers to data synthesis and provide analytical collaborative frameworks for multidisciplinary research. The numerous challenges that confront society will require that historical collections, like the VTM, are preserved, shared, and linked with other novel data to gain valuable insight to past ecological processes and lend weight to potential future trajectories of landscapes or landscape processes.

Acknowledgments

The authors would like to thank several funders, including: the William M. Keck Foundation; Berkeley Institute for Global Change Biology; UC Division of Agriculture and Natural Resources Informatics and Geographic Information Systems Program, and the US Forest Service. Much of the work was conducted in UC Berkeley’s Geospatial Innovation Facility. Several individuals have worked on the digitization process early on; we are indebted to Barbara Allen-Diaz, Ken-ichi Ueda, Brian Thomas, Tim De Chant, Esther Zeledon, Lisa Schile, Karin Tuxen-Bettman, and Anne Huber, among others. We thank Joyce Gross for use of her photo retakes. We also thank Sarah Hinman and the many undergraduate students who georeferenced the photographs and specimens in the Museum of Vertebrate Zoology and the University and Jepson Herbaria.

References

Davis, F.W., 1995. Information systems for conservation research, policy, and planning, Bioscience, 45:S36–S42.

