Lawrence Berkeley National Laboratory
Recent Work

Title
Cyclic Fatigue-Crack Propagation in Ceramics: Long and Small Crack Behavior

Permalink
https://escholarship.org/uc/item/0b391nk

Authors
Steffen, A.A.
Dauskardt, R.H.
Ritchie, R.O.

Publication Date
1989-12-01
Presented at the FATIGUE 90, Fourth International Conference on Fatigue and Fatigue Thresholds, Honolulu, Hawaii, July 15–20, 1990, and to be published in the Proceedings

Cyclic Fatigue-Crack Propagation in Ceramics:
Long and Small Crack Behavior

A.A. Steffen, R.H. Dauskardt, and R.O. Ritchie

December 1989
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
CYCLIC FATIGUE-CRACK PROPAGATION IN CERAMICS:
LONG AND SMALL CRACK BEHAVIOR

A. A. Steffen, R. H. Dauskardt and R. O. Ritchie

Center for Advanced Materials, Lawrence Berkeley Laboratory
and
Department of Materials Science and Mineral Engineering
University of California, Berkeley, CA 94720

December 1989

to be presented at FATIGUE 90, Fourth International Conference on Fatigue and Fatigue Thresholds, July 15-20, 1990, Honolulu, Hawaii

Work supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department Energy under Contract No. DE-AC03-76SF00098.
Stress/life (S/N) and cyclic fatigue-crack growth properties are studied in a Mg-PSZ, with particular reference to the role of crack size. S/N data from unnotched specimens show markedly lower lives under tension-compression compared to tension-tension loading; "fatigue limits" (at \(10^8\) cycles) for the former case approach 50% of the tensile strength. Under tension-tension loading, cyclic crack-growth rates of "long" (> 3 mm) cracks are found to be power-law dependent on the stress-intensity range \(\Delta K\) with a fatigue threshold, \(\Delta K_{TH}\), of order 50% \(K_c\). Conversely, naturally-occurring "small" (1 to 100 \(\mu\)m) surface cracks were observed to grow at \(\Delta K\) levels some 2 to 3 times smaller than \(\Delta K_{TH}\). The implications of such data for structural design with ceramics is briefly discussed.

INTRODUCTION

Recently, there has been increasing concern over the apparently anomalous behavior of "small" fatigue cracks in the engineering design and life prediction of structures (e.g. 1). Where cracks are physically small (< 500 \(\mu\)m) or approach the dimensions of microstructure or local crack-tip inelasticity, crack propagation rates are known to exceed those of "long" (\(\geq 3\) mm) cracks at equivalent applied stress-intensity ranges \(\Delta K\), and more importantly to occur at \(\Delta K\) levels less than the fatigue threshold \(\Delta K_{TH}\), below which fatigue cracks are presumed dormant. Since damage-tolerant design and life-prediction procedures generally preclude such early crack growth and invariably utilize conventional long-crack data, the accelerated and sub-threshold growth of small cracks provides a strong potential for non-conservative prediction.

The small-crack effect primarily arises from the restricted influence of crack-tip shielding mechanisms (which act to reduce the near-tip "driving force" (1,2)) in cracks of limited wake. In this context, "small" is best defined as comparable in size to the equilibrium extent of shielding behind the crack tip. The principal mechanism of such shielding in metal fatigue is generally crack closure, i.e., premature contact between
crack surfaces during the cycle due, for example, to wedging from fracture-surface asperities or corrosion debris (1,3). Accordingly, at a given applied stress intensity, a small crack may experience a larger local (near-tip) "driving force" than a long crack due to less wake shielding, analogous to the resistance-curve (R-curve) phenomenon in toughness tests.

Since many advanced ceramic materials are similarly toughened by shielding mechanisms (2), e.g., transformation toughening or fiber/whisker bridging, small-crack effects are expected to be equally important. In fact, fracture toughness tests on transformation-toughened Mg-PSZ show R-curves for small (< 400 μm) surface cracks to occur at much lower K levels than those for long cracks (4). Moreover, for subcritical cracking under monotonic loads, results for ~100 μm long cracks growing out of residual stress fields around hardness indents in soda-lime glass (5), and ~20-200 μm long surface cracks in bend specimens of Mg-PSZ (6), both show sub-threshold crack-growth behavior with a negative dependency on K, akin to behavior in metals (1). Similarly for fatigue, small-crack data have been reported for surface cracks (< 300 μm) in Ce-PSZ (7), for indentation cracks (< 50 μm) in Al₂O₃ and Si₃N₄ (8), and for corner cracks (< 250 μm) in LAS/SiC-fiber glass-ceramics (9). Although growth rates in the latter three ceramics all show a negative dependency on K, no comparisons have been made with long-crack fatigue data in the same material.

The objective of the present study is to investigate the cyclic fatigue behavior of a well characterized ceramic, Mg-PSZ, with reference to the role of microstructurally-small cracks. Fatigue properties are examined in terms of classical stress/life (S/N) and crack-propagation rate data; in the latter case results are compared for long pre-existing, through-thickness cracks with naturally-occurring small surface cracks.

EXPERIMENTAL PROCEDURES

The material examined was a partially-stabilized zirconia, containing 9 mol% magnesia (Mg-PSZ, Nicra) (10). Sintering/heat treatment in the cubic phase field, followed by controlled cooling and subeutectoid aging at 1100°C for 3 to 24 h, resulted in a series of microstructures consisting of cubic ZrO₂ grains (diameter ~50 μm), with ~35-40 vol% lens-shaped tetragonal precipitates (maximum size ~300 nm). The tetragonal precipitates undergo a stress-induced martensitic transformation to a monoclinic phase in the high stress field near the crack tip. The resultant dilatant transformation zone in the wake of the crack exerts compressive tractions on the crack surfaces and shields the
crack tip from the applied (far-field) stresses (11,12). The crack-tip stress intensity, K_{tip}, is therefore reduced from the applied (far-field) K by an amount, K_s, such that:

$$K_{\text{tip}} = K - K_s,$$

(1)

where the shielding stress intensity K_s is dependent upon the volume fraction, f, of the transforming phase within the zone, the width w of the zone, and the dilational component of the transformation strain ε^T (11):

$$K_s = A E' \varepsilon^T f w^{1/2},$$

(2)

with $E' = E/(1 - \nu^2)$, E is Young’s modulus, ν is Poisson’s modulus, and the constant A is dependent upon ε^T and the zone shape.

The microstructures examined and their room-temperature properties are listed in Table 1; these structures vary from the peak toughened (TS-grade) condition ($K_c \sim 16$ MPa\sqrt{m}) to an overaged (non-transformation-toughened) condition ($K_c \sim 3$ MPa\sqrt{m}).

TABLE 1 - Heat Treatments and Tensile Properties of Mg-PSZ

<table>
<thead>
<tr>
<th>Condition (grade)</th>
<th>Heat Treatment</th>
<th>Young’s Modulus, E (GPa)</th>
<th>Approx. Tensile Strength (MPa)</th>
<th>Fracture Toughness †</th>
</tr>
</thead>
<tbody>
<tr>
<td>overaged</td>
<td>24 h at 1100°C</td>
<td><200</td>
<td>300</td>
<td>2.5</td>
</tr>
<tr>
<td>low toughness (AF)</td>
<td>as received</td>
<td>208</td>
<td>300</td>
<td>3.0</td>
</tr>
<tr>
<td>mid toughness (MS)</td>
<td>3 h at 1100°C</td>
<td>208</td>
<td>600</td>
<td>3.0</td>
</tr>
<tr>
<td>peak toughness (TS)</td>
<td>7 h at 1100°C</td>
<td>208</td>
<td>400</td>
<td>4.0</td>
</tr>
</tbody>
</table>

†K_i and K_c are the initiation and plateau toughness values from R-curves.

S/N tests were performed on 5-mm-thick unnotched cantilever-bend specimens (9 mm wide, 70 mm long), polished to 1 μm and cycled under tension-compression (stress ratio $R = \sigma_{\text{min}}/\sigma_{\text{max}} = -1$) and tension-tension ($R = 0$) loading in controlled ambient-temperature air ($22°C$, 45% relative humidity) at a sinusoidal frequency of 100 Hz. Data are presented as cycles to failure, N_f, as a function of the maximum applied stress, σ_{max}, on the outer specimen surface.
Fatigue-crack propagation data for naturally-occurring small (<100 µm) surface cracks were determined by monitoring the top surface of bend specimens used in the S/N tests. Specimens were periodically removed and optically examined using Normarski interference microscopy. Tests were interrupted after ~100 cycles to determine damage accumulation during initial loading and after subsequent 10² to 10³ cycle intervals until failure. Small-crack lengths could be readily detected by digitizing the optical micrographs using an image analyzer, with a resolution better than ±0.5 µm. Owing to crack meandering, surface crack lengths were taken as the projected crack length normal to the direction of the bending stress. Crack-growth rates were determined over the range 10^{-13} to 10^{-6} m/cycle from crack length/number of cycles (a vs. N) curves. Stress-intensity factors were computed from linear-elastic solutions (13) for three-dimensional semi-elliptical surface cracks in bending in terms of crack depth, a, crack length, c, elliptical parametric angle, ϕ, shape factor, Q, specimen width, t, specimen thickness, B, and remote (outer fiber) bending stress, σ_b:

$$K = H_c \sigma_b (\pi a/Q)^{1/2} F(a/c,a/t,c/b,\phi)$$

(3)

where H_c is the bending multiplier and F is the boundary correction factor. Eq. 3 is valid for $0.2 \leq a/c \leq 1$, $0 \leq u \leq 90^\circ$ at $c/b \leq 0.5$. Based on examination of typical cracks, a/c ratios were found to be of the order of 0.8. Crack-growth rates (da/dN) are presented in terms of the maximum stress intensity, K_{max}, from the tensile portion of the cycle, calculated $a/c = 0.8$ at $\phi = 90^\circ$.

Fatigue-crack propagation studies for long (>3 mm) cracks were performed on 3-mm thick compact C(T) specimens, which were cycled at $R = 0.1$ with a sinusoidal frequency of 50 Hz (14-16). Crack-growth rates, over the range $\sim 10^{-11}$ to 10^{-5} m/cycle were determined under automated ΔK-decreasing and ΔK-increasing conditions, with a normalized K gradient of 0.08mm⁻¹. An electrical-resistance technique was employed to monitor crack length (with a resolution better than 5 µm) using ~ 0.1-µm NiCr films, evaporated onto the specimen surface. Crack-growth rate data are presented in terms of the maximum and alternating ($\Delta K = K_{max} - K_{min}$) stress intensities.
RESULTS AND DISCUSSION

S/N Fatigue: S/N curves for the averaged and MS-grade material, are shown in Fig. 1 for both tension-compression (R = -1) and tension-tension (R = 0) loading. Similar to prior results in PSZ (17) and Si₃N₄ (18,19), cycling in tension and compression is clearly more damaging than in cyclic tension. The MS-grade material appears to show evidence of a "fatigue limit" of approximately 300 MPa (at 10⁸ cycles with R = -1); similar to classical behavior of steels, this is roughly 50% of the tensile strength. Failures in the averaged material were observed at significantly lower stress levels.

The more damaging nature of tension-compression cycling was also apparent from a far higher density of microcracks and surface distortions observed on the tensile surfaces of MS-grade specimens after cycling at R = -1 compared to R = 0. Out-of-plane deformation in the transformation zones surrounding microcracks was highlighted using Nomarski interference techniques. The averaged condition showed a markedly lower density of microcracks.

The present S/N data is compared in Fig. 1 with previous results (17,20) for Mg-PSZ (Nicra MS-grade), tested in both low-cycle flexural bending (R = 0 and 0.86, frequency 0.03-0.16 Hz) and high-cycle rotating bending (R = -1, frequency 100 Hz). Despite the obvious scatter, the results at both R ratios are comparable with the present data.

Fatigue-Crack Propagation: Small Cracks: Crack length vs. (log) number of cycles curves, derived from monitoring the top surface of the bend specimens, were derived for the MS-grade Mg-PSZ at R = 0 and -1. Small cracks were seen to grow at progressively decreasing growth rates with increase in size. Moreover, growth rates under tension-tension conditions were somewhat slower than in tension-compression, consistent with the longer fatigue lives for specimens cycled at R = 0.

Crack-growth rates, plotted as a function of K_{max} using Eq. 3, are shown in Fig. 2. Similar to reports for Al₂O₃, Si₃N₄ and LAS/SiC₇ ceramics (8,9), and for metals (1), small-crack growth rates display a negative, non-unique, dependency on K. Growth rates, however, appear to be sensitive to the level of applied stress, and, at the same stress level, slower under tension-tension compared to tension-compression loading.
Fatigue-Crack Propagation: Long Cracks: Long-crack fatigue-crack growth rates for Mg-PSZ in tension-tension are shown in Fig. 3a; data for the MS-grade microstructure are compared with corresponding small-crack results in Fig. 2. The long-crack data conform to a Paris power-law relationship:

\[
\frac{da}{dN} = C(\Delta K)^m .
\] (4)

The exponent, m, varies between 21 to 42; the constant C appears to scale inversely with fracture toughness. For each structure, an apparent fatigue threshold, \(\Delta K_{TH}\), can be defined below \(-10^{-10}\) m/cycle. The value of \(\Delta K_{TH}\) is approximately 50% \(K_c\). It should also be noted that, despite the absence of transformation "plasticity", the overaged material exhibits fatigue-crack growth behavior with a similar power-law dependency.

Fatigue fracture surfaces were primarily transgranular with crack paths showing evidence of crack deflection, branching and uncracked-ligament bridging behind the crack tip. The degree of tortuosity appeared to diminish progressively with decreasing toughness, as evidenced by the comparatively linear crack paths in the overaged structure.

It is clear from Fig. 4a that with increasing degrees of crack-tip shielding from transformation toughening, resistance to cyclic fatigue-crack extension in Mg-PSZ is increased. In fact, it has been shown (16) that such crack-growth data for the four microstructures can be normalized by characterizing in terms of the near-tip stress-intensity range, \(\Delta K_{tip}\), which accounts for such transformation shielding (Fig. 3b):

\[
\Delta K_{tip} = K_{max} - K_s ,
\] (5)

where \(K_s\) is computed using the integrated form of Eq. 2 from Raman spectroscopy measurements of the transformation-zone size (21).

Small- and long-crack growth rates for the MS-grade microstructure are compared in Fig. 2. Here the diminished role of transformation shielding of small cracks leads to significantly faster crack-growth rates. Akin to behavior in metals (1), small cracks propagate at stress-intensity levels well below the long-crack fatigue threshold (specifically at \(K_{max}\) levels of \(-1.6\) MPa/\(\sqrt{m}\)). Crack growth appears to begin at stress intensities close to those of the near-tip \(\Delta K_{tip}\) relationship for long cracks (c.f.,
Fig. 3b), and subsequently to grow at progressively decreasing growth rates with increasing applied stress-intensity levels.

For structural design, such small-crack data represent a problem. In safety-critical applications involving metallic structures, damage-tolerant approaches are often used which rely on the integration of crack-velocity/stress-intensity (v/K) curves (e.g., Eq. 4) to estimate the time or cycles for a presumed initial crack to grow to failure. Although such cyclic v/K data are now available for ceramics, the approach may prove difficult to utilize in practice because of the large power-law dependence of growth rates (da/dN) on \(\Delta K \), which implies that the estimated life will be proportional to the reciprocal of the applied stress raised to a large power. The alternative procedure is to redefine the critical crack size in terms of the fatigue threshold \(\Delta K_{TH} \), below which crack growth is presumed dormant; this in essence is a crack-initiation criterion where \(\Delta K_{TH} \) is taken as the effective toughness. However, on the basis of the small-crack data generated in the present work (Fig. 2), this approach may also be highly non-conservative.

CONCLUSIONS

Based on a study of the cyclic properties of Mg-PSZ ceramics, involving characterization of fatigue-crack propagation behavior for both long (> 3 mm) and microstructurally-small (< 100 \(\mu \)m) cracks and of stress/life (S/N) curves, the following conclusions can be made:

1. S/N data derived from unnotched bend specimens indicate that fatigue lifetimes are significantly shorter in tension-compression \((R = -1) \) compared to tension-tension \((R = 0) \) loading. Similar to steels, at \(R = -1 \) the "fatigue limit" at \(10^8 \) cycles approaches 50% of the tensile strength.

2. Fatigue-crack growth rates for long cracks are found to be power-law dependent upon the stress-intensity range with an exponent between 21 and 42. Slowest growth rates are shown in structures with the highest toughness \(K_c \); values of the threshold, \(\Delta K_{TH} \), approach 50% of \(K_c \).

3. Fatigue-crack growth rates for naturally-occurring small cracks are found to occur at \(\Delta K \) levels significantly smaller than \(\Delta K_{TH} \); moreover, similar to metals, growth rates show a negative dependency on \(K \) and are sensitive to the level of applied stress.
Acknowledgments: This work was supported by the Director, Office of Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy under Contract No. DE-AC03-76SF00098. We thank Dr. D. B. Marshall, D. Malone and T. Yee for helpful discussions and experimental assistance.

REFERENCES

Figure 1. S/N fatigue curves for overaged and transformation-toughened (MS-grade) Mg-PSZ at $R = 0$ (tension-tension) and -1 (tension-compression). Data from Swain et al. (17,20) are shown for comparison.
Figure 2. Small-crack growth-rate data in MS-grade Mg-PSZ as a function of K_{max}, showing crack growth well below the long-crack fatigue threshold.
Figure 3. Long-crack growth-rate data in overaged and transformation-toughened Mg-PSZ as a function of a) nominal ΔK and b) near-tip $\Delta K_{\text{tip}} (K_{\text{max}}-K_{\text{a}})$, showing that cyclic crack-growth resistance is increased with the magnitude of transformation toughening.