Title
The photon polarization in $b \rightarrow X \gamma$ in the standard model

Permalink
https://escholarship.org/uc/item/0bj632vk

Authors
Grinstein, Benjamin
Grossman, Yuval
Ligeti, Zoltan
[et al.]

Publication Date
2004-12-08

Peer reviewed
The photon polarization in $B \to X\gamma$ in the standard model

Benjamín Grinstein, 1 Yuval Grossman, 2 3, 4 Zoltan Ligeti, 5 and Dan Pirjol 6

1Department of Physics, University of California at San Diego, La Jolla, CA 92093
2Department of Physics, Technion–Israel Institute of Technology, Technion City, 32000 Haifa, Israel
3Physics Department, Boston University, Boston, MA 02215
4Jefferson Laboratory of Physics, Harvard University, Cambridge, MA 02138
5Ernest Orlando Lawrence Berkeley National Laboratory, University of California at Berkeley, CA 94720
6Center for Theoretical Physics, Massachusetts Institute for Technology, Cambridge, MA 02139

The standard model prediction for the $B^0 \to X_s \gamma$ decay amplitude with a right-handed photon is believed to be tiny, suppressed by m_s/m_b, compared to the amplitude with a left-handed photon. We show that this suppression is fictitious: in inclusive decays, the ratio of these two amplitudes is only suppressed by $g_s/(4\pi)$, and in exclusive decays by Λ_{QCD}/m_b. The suppression is not stronger in $B^0 \to X_s \gamma$ decays than it is in $\pi^0 \to \gamma$ decays. We estimate that the time dependent CP asymmetries in $B \to K^\ast\gamma$, $K_L\pi^0\gamma$, and $\pi^+\pi^-\gamma$ are of order 0.1 and that they have significant uncertainties.

I. INTRODUCTION

The standard model (SM) predicts that photons are mainly left-handed in $b \to q\gamma$ ($q = s, d$) decay (and right-handed in $b \to q\bar{q}\gamma$). We define the ratio

$$r_q \equiv \frac{A_R}{A_L} \equiv \frac{A(B^0 \to f_q\gamma R)}{A(B^0 \to f_q\gamma L)}, \quad (1)$$

where ϕ is a weak phase and δ is a strong phase. It is usually stated that $r_q = m_q/m_b \ll 1$ in the SM [1]. (Throughout this paper B refers to B^0 or B^+ that contain a b quark, and r, ϕ, and δ depend on the final state, f.) New physics can modify this prediction, and therefore several methods have been proposed to measure the photon helicity [1, 2].

In $B \to f_q\gamma$, where f is a CP eigenstate, since γ_L and γ_R cannot interfere, the time dependent CP asymmetry

$$\frac{\Gamma[B^0(t) \to f_q\gamma]}{\Gamma[B^0(t) \to f_q\gamma]} - \frac{\Gamma[B^0(t) \to f_q\gamma]}{\Gamma[B^0(t) \to f_q\gamma]} = S_{f_q\gamma} \sin(\Delta m t) - C_{f_q\gamma} \cos(\Delta m t), \quad (2)$$

is sensitive to r. In the SM, ϕ_s and $C_{f_s\gamma}$ are suppressed by $(V_{ub}V_{us})/(V_{ub}V_{us})$, and to first order in $r_s(\ll 1)$

$$S_{f_q\gamma} = -2 r s \cos(\delta) \sin 2\beta. \quad (3)$$

The first measurements of such CP asymmetries were carried out recently,

$$S_{K^\ast\gamma} = \begin{cases} +0.25 \pm 0.63 \pm 0.14 & \text{BABAR [3]}, \\ -0.79 \pm 0.56 \pm 0.10 & \text{BELLE [4]}, \end{cases} \quad (4)$$

yielding a world average $S_{K^\ast\gamma} = -0.28 \pm 0.45$. At a super- B-factory the statistical error with 50 ab$^{-1}$ data is estimated to be $\delta(S_{K^\ast\gamma}) = 0.04$ [5]. The Belle Collaboration also measured the CP asymmetry $S_{K_S\pi^0\gamma} = -0.58^{+0.46}_{-0.38} \pm 0.11$, integrating over the invariant mass range 0.6 GeV $< m_{K_S\pi^0} < 1.8$ GeV [6]. It will also be possible to measure this CP asymmetry in $B \to \pi^+\pi^-\gamma$ [7], and maybe even with additional pions [8].

The purpose of this paper is to study the SM prediction for r. (For earlier attempts to go beyond the naive estimate, see Refs. [9, 10].) We find that r is only suppressed by $g_s/(4\pi)$ in inclusive $b \to X\gamma$ decay, and by Λ_{QCD}/m_b in exclusive $B \to K^\ast\gamma$ and $\rho\gamma$ decay.

To understand the origin of such effects, recall that the effective Hamiltonian for $b \to s\gamma$ is [11]

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} \sum_{i=1}^8 c_i(\mu) O_i(\mu). \quad (5)$$

For our discussion the operators directly relevant are

$$O_2 = \bar{s} \gamma^\mu P_L b \left(\bar{\gamma}_\mu P_L c \right), \quad (6)$$

$$O_7 = \frac{e}{16\pi^2} \bar{s} \sigma^{\mu\nu} F_{\mu\nu}(m_q P_R + m_s P_L)b, \quad (6)$$

where $P_{L,R} = (1 \pm \gamma_5)/2$, and we neglect the $m_s P_L$ part of O_7 thereafter. At the parton level, as long as $b \to s\gamma$ is a two-body decay (either from the leading contribution of O_7 or subleading virtual contributions from $O_{i \neq 7}$), the left-handed s quark is back-to-back to a photon. Then the two-body kinematics implies that only γ_L is allowed. This argument does not apply to multi-body final states, such as $b \to s\gamma$ + gluons.

The $m_s P_R$ part of the leading operator O_7 contributes only to A_L to all orders in the strong interaction. To prove this, note that the electromagnetic tensor for γ_L is $F_{\mu\nu}^L = \frac{1}{2}(\bar{s}_R \gamma_\mu \gamma_5 P_L c_L)$, where $\bar{F}_{\mu\nu} = \frac{1}{2}(\bar{s}_R \gamma_\mu P_L c)$, and O_7 can be written in terms of $m_b \epsilon_{\mu\nu}$. Thus, independent of hadronic physics, the photon from O_7 is left-handed. This argument only applies for O_7. Indeed, we find by explicit calculation that other operators produce right-handed photons once QCD corrections are included.
In this section we estimate \(r \) from an inclusive calculation. The result can only be trusted if several hadronic final states are allowed to contribute, and \(r \) for specific final states cannot be obtained from this calculation model independently.

The leading contribution to the inclusive \(\bar{B} \to X_s \gamma_R \) rate is of order \(\alpha_s \). It arises from bremsstrahlung contributions to the matrix elements of operators other than \(O_7 \). The numerically dominant contribution comes from \(O_2 \) shown in Fig. 1. The corresponding amplitude was calculated in Ref. [12, 13]. We find that it yields equal rates for left- and right-handed photons at order \(\alpha_s \), at any point in the \(b \to s \gamma \) Dalitz plot.

Because of the complicated \(m_b \)-dependence of the double differential rate, \(d^2 I_2^{(\text{brem})}/dE_b dE_\gamma \), we integrate over \(E_b \) and \(E_\gamma \), numerically. To reduce the large sensitivity to the scale of \(\alpha_s \), we include the known order \(\alpha_s^2/\beta_0 \) contribution to \(\Gamma^{(\text{brem})}_{22} \) [14]. (At this order the equality of the decay rates to left- and right-handed photons is violated by less than 1%, and can be neglected.)

Using the “effective” Wilson coefficients at leading order [15], \(C_2(m_b) = 1.1 \) and \(C_7(m_b) = -0.31 \), \(\alpha_s(m_b) = 0.22 \) with \(m_b = 4.8 \text{ GeV} \), and \(m_c = 1.4 \text{ GeV} \), we obtain

$$\frac{\Gamma^{(\text{brem})}_{22}}{\Gamma_0} \approx 0.025, \quad \Gamma_0 = \frac{C_F^2 |V_{tb}V_{td}^*|^2 \alpha_{em} C_G^2 m_b^5}{32 \pi^4}. \quad (7)$$

This result corresponds to integrating the numerator over \(x \equiv 2E_b/m_b > 0.75 \) (that is, roughly, \(E_\gamma > 1.8 \text{ GeV} \)). This result includes also the \(O(\alpha_s^2/\beta_0) \) correction, which is sizable, indicating that the relevant scale of \(\alpha_s \) may be well below \(m_b \); without including it the result in Eq. (7) would be 0.015. Thus, we find at lowest order in \(g_s \)

$$\langle r_s \rangle_{x>0.75} = \sqrt{\Gamma^{(\text{brem})}_{22}}/(2\Gamma_0) \approx 0.11. \quad (8)$$

This value of \(\langle r_s \rangle \) decreases only slowly with a stiffer cut on \(x \).

The value of \(\cos \delta_s \) is physical, as it enters \(S_{fL\gamma} \) in Eq. (3). Yet it cannot be estimated from the inclusive calculation. The reason is that the dominant contribution to \(A_R \) comes from the \(s \gamma \) decay of \(O_2 \), while to \(A_L \) from the \(b \to s \gamma \) decay generated by \(O_7 \). These are different final states, for which one can choose the phase conventions independently. These amplitudes can still contribute to the same hadronic final states and interfere once hadronization effects are included. Thus, the relevant phase for any final state is determined by the hadronization processes and cannot be extracted from the inclusive calculation. Comparing the absorptive and dispersive parts of the inclusive result, we find \(\cos^2 \delta_s \approx 0.3 \) with small variation over \(0.75 < x < 1 \). The only conclusion we can draw here is that we expect the strong phase to be generically large.

Next we discuss inclusive \(B \to X_s \gamma \). In Eq. (5), operators multiplying the suppressed CKM factor \(V_{ub}V_{us}^* \) were neglected. The analogous terms are important in \(b \to d \gamma \), since in this decay the u quark loop is not CKM suppressed compared to the c and t loops. The \(b \to d \gamma \) effective Hamiltonian is of the form

$$H_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{tb}V_{td}^* \sum_{i=1}^{8} C_i(\mu) O_i(\mu) \quad (9)$$

$$\frac{4G_F}{\sqrt{2}} V_{ub}V_{ud}^* \sum_{i=1}^{2} C_i(\mu) [O_i(\mu) - O_i(u,\mu)],$$

where prime denotes that in the standard operator basis Eq. (6) the s quark is replaced by d, and the u subscript means that c and \(\bar{c} \) are replaced by u and \(\bar{u} \); for example,

$$O_{2,1u}^\prime = (\bar{u} \gamma^\mu P_L b)(\bar{d} \gamma_\mu P_L u). \quad (10)$$

It is useful to define

$$r_d e^{i(\phi_d + \delta_d)} = r_s e^{i\delta_s} + \frac{V_{ub}V_{ud}^*}{V_{tb}V_{td}^*} r_u e^{i\delta_u}, \quad (11)$$

where the first [second] term comes from the contribution of the top [bottom] line in Eq. (9) to \(A_R \). The first term is the same as in \(b \to s \) decay (recall that we neglected \(m_s \)).

For the u quark loop, taking the limit of the quark mass to zero, the calculation of Ref. [14] simplifies considerably, and we can obtain analytic results

$$\frac{1}{\Gamma_0} \frac{dI^{(u,\text{brem})}_{22}}{dx} = \frac{C_F^2}{C_G^2} \left\{ \frac{\alpha_s}{27\pi} 2x(2-x) \right. \right.$$

$$\left. + \frac{\alpha_s^2}{27\pi^2} \left[x(44 - 19x + 18x^2 - 24x^3) \right. \right.$$

$$\left. - \frac{x(2-x)}{2} \ln[x(1-x)] + \frac{2x^3}{3} \ln x \right\},$$

where \(\alpha_s \) is evaluated at the scale \(m_b \) in the \(\overline{\text{MS}} \) scheme. For the difference of the rates to \(\gamma \) and \(\gamma_L \), we obtain

$$\frac{1}{\Gamma_0} \frac{d\left[I^{(u,R)}_{22} - I^{(u,L)}_{22}\right]}{dx} = \frac{C_F^2}{C_G^2} \frac{\alpha_s^2}{27\pi^2} \left[(3-3x+4x\ln x) \right. \right.$$

$$\left. - \frac{x^3}{3} \ln x \right],$$

where \(r_s \) decreases slowly to zero, and it gives a slight \(\gamma_L \) enhancement near \(x = 1 \). We obtain for \(x > 0.75 \)

$$\frac{I^{(u,\text{brem})}_{22}}{\Gamma_0} \approx 0.030. \quad (14)$$
The absolute values of the amplitudes corresponding to the c and u loops [the squares of which yield Eqs. (7) and (14)] are comparable to each other. In the absence of strong phases this would result in a cancellation and lead to a very small r^u. Note that, as in the $b \to s\gamma$ case, we cannot predict the sign of $\cos \delta^u$. Moreover, the values of r^u and δ^u are sensitive to the difference between the strong phases of the c and u loops, for which we do not consider the perturbative result reliable. In particular, the matrix element of O^u_2 in $b \to d\gamma$ may have sizable long distance contributions. In any event, the short distance calculation predicts that the strong phase vanishes for the u loop contribution, while it is sizable for the c loop. Therefore, the cancellation in r^u is unlikely to be effective. The important point is that we expect $r_d \sim r^u_d \sim r_s$.

The crucial difference between the time dependent CP asymmetries in $B \to f_s\gamma$ and $B \to f_d\gamma$ is that in the latter case, naively, there are two very strong suppression factors. First, considering O_7 only, $S_{f_s\gamma}$ is suppressed by m_d/m_b. Second, the phase of the dominant decay amplitude, V_{td}/V_{ub}, cancels the phase of the $B^0 - B^0$ mixing amplitude, yielding another strong suppression of $S_{f_s\gamma}$. Both of these suppressions are fictitious, since the $V_{ub}V_{td}^*(O^u_2 - O^u_{2,ud})$ contributions lift both the m_d/m_b suppression, just like in the $b \to s\gamma$ case discussed earlier, and also the suppression coming from the cancellation of the mixing and the decay phases. The leading contribution to $S_{f_s\gamma}$ is proportional to r^u_d, which gives a contribution to A_R with weak phase γ. Using the fact that the phase of the mixing amplitude is 2β, and that of A_L is β, we obtain at leading order

$$S_{f_s\gamma} = -2 \left| \frac{V_{ub}V_{td}^*}{V_{td}/V_{ub}} \right| r^u_d \cos \delta^u_d \sin(\beta + \gamma).$$

This result is independent at first order in r^u_d of the small direct CP violation in $b \to d\gamma$ in the SM.

A model dependent way to connect the inclusive calculations with exclusive $B \to K^*\gamma$ or $\rho\gamma$ is the Ali-Greub model [16] obtained by smearing the inclusive rate with a model shape function and integrating over $E_\gamma > (m_B - 1\, \text{GeV})^2/(2m_B)$ (i.e., attributing the rate to $m_X < 1\, \text{GeV}$ to the K^* or ρ). Restricting the shape function parameters to reproduce $\mathcal{B}(B \to K^*\gamma)$, we obtain $r_K \approx 0.025$, with little sensitivity to the model parameters. This is comparable in magnitude but independent of the m_s/m_b contribution. This model also yields $r_\rho \approx r_K$, which is much larger than m_d/m_b. To compare with the “more inclusive” measurement [6], we computed $\langle r_\rho \rangle_{m_X < 1.5\, \text{GeV}} \approx 0.055$ using simple shape function models. Given the model uncertainties, this figure should be taken as a very rough estimate.

III. EXCLUSIVE $B \to K^*\gamma$ AND $B \to \rho\gamma$

We consider next the photon polarization in exclusive $B \to K^*\gamma$ and $\rho\gamma$ decays using SCET [17]. We prove that O_{1-6} contribute only to A_L to all orders in α_s at leading order in Λ_{QCD}/m_b (this is viewed as of the same order as m_K^*/E_K^*. We identify several types of subleading SCET operators that give amplitudes to right-handed photons, and yield r_K and r_ρ of order Λ_{QCD}/m_b.

Using SCET, a factorization theorem for heavy-to-light form factors has been proven at leading order in Λ_{QCD}/m_b [18–20]. There are two contributions to the form factors, a nonfactorizable (or soft or form-factor) part and factorizable (or hard scattering) part, which are of the same order in Λ_{QCD}/m_b.

The exclusive radiative decays considered here were analyzed in an expansion in Λ_{QCD}/m_b in [9, 21–23], and recently in SCET [24]. The nonfactorizable part receives its dominant contribution from O_7 and gives rise to A_L only. The operator O_2 enters at leading order only via factorizable contributions.

When operators $O_{i\neq 7}$ are included, the hierarchy of the relevant scales gets rather complicated, since $m_2^2 > m_1^2 \sim \Lambda_{QCD}/m_b > \Lambda^2_{QCD}$. Ref. [24] assumed that the $c\bar{c}$ loop is dominated by hard loop momenta and can be integrated out near the scale m_b. Here we adopt a simpler approach, by neglecting the charm mass and assuming that its effects can be included as a perturbation using the formalism of Ref. [25] without encountering singularities. This assumption is borne out by the explicit one- and two-loop calculations.

The effective Hamiltonian in Eq. (5) is matched in SCET\(_1\) onto

$$H_{\text{eff}} = \frac{G_F V_{td}^* e}{\sqrt{2} \pi^2} E_\gamma \left[c(\omega) s_{n,\omega} A^1 \bar{m}_b P_L b_c \right. \left. + b_{1\ell}(\omega) O^{(1\ell)}(\omega) + O^{(1R)}(\omega) + O(\lambda^2) \right],$$

where the ωs are the usual collinear label momenta. The relevant modes are soft quarks and gluons with momenta $k_\perp \sim \Lambda$ and two types of collinear quarks and gluons along n and \bar{n} (including charm, which can be soft or collinear). Note that the approach of Ref. [24], treating $m_c \sim m_b$, will likely require additional modes. We take the photon momentum as $q_\gamma = E_\gamma p_\gamma$, the collinear quark to move along p_γ, and A^1_{\perp} denotes the transverse photon field. The operator in the first line in Eq. (16) occurs at leading order in the expansion parameter, $\lambda = \sqrt{\Lambda/m_b}$, and its Wilson coefficient is dominated by C_7, $c(\omega) = C_7 + O[\alpha_s(m_b)]$. The operators in the second line, $O^{(1\ell)}(\omega_1,\omega_2)$ and $O^{(1R)}(\omega_1,\omega_2)$ are the only SCET\(_1\) operators suppressed by λ that couple to a transverse photon and are allowed by power counting and s chirality. Here $i q B^\nu \equiv [n \cdot i D_\perp, i D^\nu_{\perp}]$ is the collinear gluon field tensor; for the remaining notations see Ref. [26]. The operators $O^{(1\ell)}$ and $O^{(1R)}$ couple
only to $\gamma_{L,R}$, respectively. Their Wilson coefficients are

\[
\begin{align*}
b_{1L}(\omega_1, \omega_2) &= C_7 + C_2/3 + O[C_3-\alpha_s(m_b)], \\
b_{1R}(\omega_1, \omega_2) &= -C_2/3 + O[C_3-\alpha_s(m_b)].
\end{align*}
\]

(18)

Although the operators in the first and second lines of Eq. (16) are of different orders in λ, after matching onto SCET$_T$, they contribute at the same order in Λ_{QCD}/m_b to the $B \to K^*\gamma$ amplitude. The leading order $\ell(\omega)$ term gives the nonfactorizable contribution, which only contributes to A_L, while $O^{(1L)}$ and $O^{(1R)}$ give the factorizable contributions through time-ordered products with the ultrasoft-collinear Lagrangian, $\mathcal{L}^{(1)}_{\xi \bar{q}}$ [27]. After matching onto SCET$_T$ one finds, schematically

\[
\mathcal{J}_{L,R} \propto \left[\frac{d^4x}{(2\pi)^2} T \left\{ O^{(1L)}(\omega_i), i\mathcal{E}^{(1)}(x) \right\} \right] \int dk_+ \mathcal{J}_+ (\omega_i^1, k_+)
\]

for \mathcal{J}_L and

\[
\mathcal{J}_{L,R} \propto \left[\frac{d^4x}{(2\pi)^2} T \left\{ O^{(1R)}(\omega_i), i\mathcal{E}^{(1)}(x) \right\} \right] \int dk_+ \mathcal{J}_+ (\omega_i^1, k_+)
\]

(19)

where $\mathcal{J}_{L,R}$ are jet functions that have expansions in $\alpha_s(\sqrt{\Lambda_{QCD}/m_b})$. The operator in Eq. (19) contributes to $B \to K^*\gamma$ at leading order, and

\[
A_L = \frac{G_F V_{tb} V_{ts}^*}{\sqrt{2} \pi^2} \left[\frac{m_d}{2} \left\{ \left(\frac{m_B}{b} \right)^{\gamma K^*} \frac{\alpha_s}{m_B} \int \frac{dx dt dk_+}{2 \pi} \right. \right. \\
\times b_{1L}(m_B(1-t), m_B t) \mathcal{J}_+ (x, t, k_+) \phi_{b}^\gamma (x) \phi_{b}^\gamma (k_+) \left. \right\}, \right.
\]

(21)

where all nonperturbative matrix elements are defined as in [26]. In Eq. (20) only gives rise to longitudinal K^* and therefore does not contribute to $B \to K^*\gamma$. This proves that O_2 contributes at leading order in Λ_{QCD}/m_b to $B \to K^*\gamma$, via Eq. (19), but its contribution to $B \to K\gamma$ vanishes at this order. (Interestingly, it would contribute to $B^* \to K^\gamma$ at leading order.) The same proof also holds for the other four-quark operators, O_{1-6}.

This result agrees with the $O(\alpha_s)$ computation [21, 22], and extends it to all orders in α_s. This is important, since $\alpha_s(\mu)$ at the hard-collinear scale $\mu^2 \sim \Lambda_{QCD}$ may or may not be perturbative [18, 28, 29]. The suppression of A_R can be understood from a simple helicity argument. Since the s quark is left-handed, the K^* cannot be right-handed, unless additional right-handed gluons end up in the final meson. However, the contributions of higher Fock states are power suppressed.

The $B \to K^*\gamma_R$ amplitude does arise at subleading order in Λ_{QCD}/m_b. There are several sources of such corrections. For example, (i) time ordered products of $O^{(1R)}$ with the subleading collinear Lagrangian $\mathcal{L}_n^{(0,\pm)}$, which lead to factorizable contributions similar to Eq. (19) containing an explicit factor $\alpha_s(\sqrt{\Lambda_{QCD}/m_b})$; (ii) higher order terms in the SCET$_T$ effective Lagrangian in Eq. (16), such as the $O(\lambda^2)$ operator

\[
O^{(2R)}(\omega) = \int \frac{dx_+}{2\pi} \frac{d k_-}{d k_+} e^{i(k_+ k_+/2)} \left(\frac{2E_b k_+}{m_b^2} \right) \\
\times \left(\delta_{n,\gamma} i [\mathcal{D}^\pm Y_{n,\gamma}] \frac{\tilde{n}_x k_+ \otimes n}{2} \right) \mathcal{A}_L P_R b_v, \right.
\]

(22)

where the gauge invariant operator $[\mathcal{D}^\pm Y_{n,\gamma}]$ contains Wilson lines of the ultrasoft fields in the n direction. $O^{(2R)}$ is obtained by matching the graph in Fig. 1 with one ultrasoft gluon, and its Wilson coefficient is related to b_{1R} in Eq. (18) by reparameterization invariance [30]. The $C_2/3$ terms in Eq. (18) correspond to $m_c = 0$, when $\kappa(z) = 1/2$. In this case the k_- and x_+ integrals in Eq. (22) can be performed trivially. However, in Eq. (22) we kept $m_c \neq 0$ to exhibit the analogy with the nonperturbative corrections to inclusive $b \to s\gamma$ decay [31, 32]. For $m_c \neq 0$, additional nonlocality is introduced by $\kappa(z) = 1/2 \pm \arctan (\sqrt{z(4-z)})/2$ with $z = 2E_b k_- m_b^2$. [12]. For $m_c \neq 0$, the $C_2/3$ terms in Eq. (18) should be multiplied by $2\ell_c(z, \omega_2/m_b^2)$. Expanding $O^{(2R)}$ in x_+ reproduces the series of operators proportional to $(m_B \Lambda_{QCD}/m_b^2)^n$ in Eq. (5) in [32]. Time-ordered products of $O^{(2R)}$ with the ultrasoft-collinear Lagrangian, $\mathcal{L}_n^{(2)}$, give $O(\Lambda_{QCD}/m_b)$ soft contributions to A_R, with no α_s suppression compared to A_L.

A complete study of these subleading contributions is rather involved and we leave it for future work. It seems unlikely to us that a cancellation could result in a suppression of r_K and r_{ℓ} to order Λ_{QCD}/m_b^2. This leads to the dimensional estimate

\[
r_K \sim \frac{1}{3} \frac{C_2 \Lambda_{QCD}}{C_7 m_b} \sim 0.1. \quad \right.
\]

(23)

This effect dominates over the m_s piece of O_ℓ for r_K. The estimate for r_{ℓ} is more involved because of the contributions with different weak phases,

\[
r_{\ell} \sim r_K \left[1 + \frac{V_{tb} V_{td}^*}{V_{tb} V_{ts}^*} \left(C_{loop} \frac{m_b^2}{m_b^2} + C_{WA} 4\pi \frac{\Lambda_{QCD}}{m_b} \right) \right]. \right.
\]

(24)

The C_{loop} term comes from the non-cancellation of the c and u loops, and we expect it to have a numerically large coefficient. The C_{WA} term arises from weak annihilation, whose contribution to A_R at order Λ_{QCD}/m_b vanishes [9]. The latter contributes significantly only in B^0, while in B^0 it is color suppressed. Thus, we expect that the SM prediction for $S_{\ell\gamma}$ is not much smaller than it is for $S_{K\gamma}$.

For higher mass one-body hadronic final states, A_R still vanishes at leading order, but the suppression by m_X/E_X is expected to be less effective as m_X increases (although there is no evidence for this in the $B \to D X$ data [33]). Thus, the SM value of r is expected to depend on the final state. For high-mass and multi-body final states A_R may arise, formally, at leading order in Λ_{QCD}/m_b. For example, $B \to B^0 \pi^{(0,\pm)}$ followed by $B^* \to K^\gamma_R$ can give rise to $B^0 \to K S m_b^{2/3}$ with $m_{K^\gamma} \sim \sqrt{\Lambda_{QCD}/m_b}$, without a Λ_{QCD}/m_b suppression.
Therefore, averaging the results of $B \to K^*\gamma$ [3, 4] with $B \to K_S\pi^0\gamma$ [6] is not free from theoretical uncertainties.

IV. DISCUSSION AND SUMMARY

We studied the standard model prediction for the $B \to X_s\gamma$ and $X_d\gamma$ decay amplitude with a right-handed photon, A_R, compared to the amplitude with a left-handed photon. Considering only O_7, their ratio is $r_{s,d} = m_{s,d}/m_b$, which reproduces the often-quoted prediction independent of the hadronic final state. However, including the other operators, $O_{i\neq 7}$, A_R becomes much larger than this naive estimate, and hadronic physics gives rise to sizable uncertainties. The time dependent CP asymmetries also become sensitive to the strong phase.

In inclusive $B \to X_s\gamma$ and $X_d\gamma$ decays, A_R is only suppressed by $g_s/(4\pi)$. We calculated r inclusively, and found it to be of order 0.1 depending on the cut on the photon energy [see Eq. (8)]. While this calculation is reliable, it cannot be easily compared to data. If one restricts the hadronic final state, such as in the measurement of the time dependent CP asymmetry $S_{K_s\pi^0\gamma}$ with a range of $K_S\pi^0$ invariant masses, then that can no longer be calculated using inclusive methods. Still, our results indicate that it would be hard to argue that a measurement of $S_{K_s\pi^0\gamma}$ ~ 0.1 cannot be due to SM physics.

In exclusive $B \to \bar{K}\gamma$ and $\rho \gamma$ decays, we proved using SCET that A_R vanishes at lowest order in the Λ_{QCD}/m_b expansion to all orders in α_s. The leading contribution to A_R is formally of order Λ_{QCD}/m_b, but numerically it is enhanced by α_s/α' [see Eqs. (23) and (24)]. The result depends on unknown hadronic matrix elements, which give rise to a sizable uncertainty in the SM prediction.

Both the inclusive and the exclusive calculations predict that r_s and r_d are comparable to each other in the SM. Thus, we also expect the time dependent CP asymmetries in $\bar{B}^0 \to J/\psi\gamma$ to be comparable to those in $\bar{B}^0 \to f_2\gamma$ (except for a modest suppression by $|V_{ub}/V_{td}|$), in contrast to what has been widely believed. We estimate these asymmetries in decays such as $B \to K^*\gamma$, $\rho\gamma$, $K_S\pi^0\gamma$, and $\pi^+\pi^-\gamma$ to be of order 0.1, with large uncertainties.

To conclude, our main result is that the standard model prediction for A_R/A_L is of order 0.1, with sizable uncertainty. A measurement of it much above this level would indicate new physics. To draw conclusions from a smaller value would require a more complete analysis and knowledge of hadronic matrix elements including strong phases. More effort in this direction would be welcome.

Acknowledgments

We thank Andy Cohen and Iain Stewart for helpful discussions. Z.L. thanks the particle theory group at Boston University for its hospitality while part of this work was completed. B.G. was supported in part by the DOE under Grant DE-FG03-97ER40546. Z.L. was supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, Division of High Energy Physics, of the U.S. Department of Energy under Contract DE-AC03-76SF00098 and by a DOE Outstanding Junior Investigator award. D.P. was supported by the U.S. Department of Energy under Grant DOE-FG03-97ER40546 and by the NSF under grant PHY-9970781.