Proof of Theorem 3.3. In the case of S associated with a symmetric basis of an F-space it is necessary to prove that $S'' = S''$, and this follows from 1.3 and 2.6.

If S is a σ-perfect F-space, then either $S = S$ in which case we are finished or $S \equiv s$ in S'. In the second case for each u in S' define

$$P_u(e) = \sup \sum \{ \sum_i |s_{i0}|^2 : \pi \text{ is a permutation on the natural numbers} \}$$

and proceed as in the γ-perfect case. The seminorms P_u defined in the course of the argument will all be symmetric by 2.10 so that \mathcal{S} will be a symmetric basis for its closed linear span by Definition 1.2.

The following is a generalization of (SB$_1$) \Rightarrow (SB$_3$) of Singer [8], 6, Theorem 5.3.

3.4. Corollary. A basis (s_{n}) of a locally convex F-space X is a symmetric basis if and only if every permutation (s_{n}) of (s_{n}) is a basis of X equivalent to (s_{n}).

Proof. Without loss of generality we may restrict our attention to \mathcal{S} a basis for a locally convex space S.

The necessity of the condition was given in Lemma 1.3.

If every permutation of \mathcal{S} is a basis for S equivalent to \mathcal{S}, then s_{n} implies (s_{n}) is symmetric. Therefore, $S'' = S''$ so that, by 3.5 and 3.3, \mathcal{S} is a symmetric basis for S.

References

Reçu par la Rédaction le 9. 8. 1966

An example concerning reflexivity

by

R. HERMAN and R. WHITLEY (Maryland)*

The spaces c_{0} and l_{0} not only fail to be reflexive but contain no infinite-dimensional reflexive subspace [7, 12]. It is natural to conjecture that each non-reflexive space contains an infinite-dimensional closed subspace with this property; this conjecture is false. Here we give an example of a Banach space which is not reflexive (or even quasi-reflexive [4]) yet has the property that each of its closed infinite-dimensional subspaces contains a subspace isomorphic to the Hilbert space l_{2}. We also discuss this type of non-reflexive space and show that it has some properties that is in common with reflexive and quasi-reflexive spaces.

Lemma 1. Let X be the quasi-reflexive space constructed by R.C. James ([8], also see [9], p. 198). Every infinite-dimensional closed subspace of X contains a subspace isomorphic to l_{2}.

Proof. We recall that the space X consists of vectors $x = (a_{1}, a_{2}, \ldots, a_{n}, \ldots)$, x a sequence of scalars, where x is in X if and only if $\lim a_{n} = 0$ and

$$||x|| = \sup \left\{ \sum^{n}_{i=1} |a_{i+1} - a_{i}|^{2} : |a_{i+1} - a_{i}|^{2} \right\}^{1/2}$$

is finite, where the supremum is taken over all finite increasing (or one term) sequences. The vectors x_{n}, with a one in the i-th place and zeros elsewhere, constitute a Schauder basis for X.

Using a theorem due to Bessaga and Pelczynski ([2], C.5, p. 157), each infinite-dimensional closed subspace Y of X contains a sequence (y_{n}) which is basic (so that y_{n} is a Schauder basis for its closed linear span (y_{n})) and is equivalent to a block basis (z_{n}), with respect to x_{n}, i.e. each z_{n} is given by

$$z_{n} = \sum a_{i} x_{i}$$

* The first author was supported by a National Defense Education Act fellowship and the second by National Science Foundation grant GP 5404.
with \(g_n \preceq g_{n+1} \) for all \(n \), and we may choose \(|\mathbf{a}_n| = 1 \). By the equivalence of the basis \(\{g_n\} \) and \(\{a_n\} \) we mean that the linear operator induced by sending \(g_n \) to \(a_n \) is an isomorphism of \(\{g_n\} \) with \(\{a_n\} \). Because of this equivalence it is enough to show that \(\{a_n\} \) contains a subspace isomorphic to \(B \). We will show, in fact, that \(\{\mathbf{a}_n\} \) is isomorphic to \(B \). To simplify our indexing we will suppose that we have already discarded every other block in the basis \(\{g_n\} \) so that there is a space between each block in the sense that \(a_n = 0 \) for all \(n \).

Let \(p^i = (p_1^i, \ldots, p_{m^i+1}^i) \) be a sequence which yields the norm of \(x_i \).

Let an integer \(m \) be given. Combine the first \(m \) sequences \(p^1, \ldots, p^m \) into an increasing sequence \(I \) as follows:

\[
I = (p_1^1, \ldots, p_{m^1+1}^1, r_1, p_1^2, \ldots, p_{m^2+1}^2, r_2, \ldots, r_m, p_1^m, \ldots, p_{m^{m-1}+1}^m, r_m, p_{m^m+1}^m),
\]

where \(r_1, \ldots, r_m \) are chosen so that each \(r_i \) is zero in the \(r_i \)-th coordinate for each \(i \); note that we need the space between the \(x_i \) mentioned in the paragraph above, to do this.

Set \(I = (q_1, \ldots, q_{m^m+1}) \) and let \(\sum q_i = (b_i) \) be an element in \(\{a_i\} \).

Then

\[
\left\| \sum q_i x_i \right\| \geq m \left| b_{m^m+1} - b_{m^m} \right| = m \sum |q_i| |a_i| - m \sum |q_i| |a_i| = m \sum |q_i| |a_i| = m \left\| x_i \right\| \|
\]

For each \(i \), \(\sum q_i x_i \geq m \left| b_{m^m+1} - b_{m^m} \right| \|
\]

For any element \(\sum q_i x_i = (b_i) \) in \(X \) and any increasing sequence \(p^1, \ldots, p_{m^m+1} \) we consider the sum

\[
(*) \sum |q_i| \left| a_i - a_{i+1} \right| = \sum |q_i| \left| a_i - a_{i+1} \right|.
\]

A typical term \(|a_i - a_{i+1}| \) has two possible forms. The first form is \(|a_i - a_{i+1}| = -|a_i - a_{i+1}| \). Let \(A \) be the set of all the indices \(i \) for which a term of this form occurs in \((*) \). We have

\[
\sum |b_{m^m+1} - b_{m^m} | = m \sum |q_i| |a_i - a_{i+1}| \leq m \sum |q_i| |a_i| = \sum m |q_i| |a_i|.
\]

For a sequence \(\{x_i\} \) of Banach spaces, the \(\sum \)-sum \(X = \sum X_i \) is the Banach space \(X \) of sequences \(\{x_i\} \) with \(x_i \in X_i \) and with finite norm \(\|x_i\| = \sum |x_i|^p \| \) (5), p. 51).

Lemma 3. Let \(X \) be a sequence of Banach spaces, \(X = \sum X_i \), the \(\sum \)-sum of these spaces. Suppose that \(M \) is an infinite-dimensional closed
subspace of X. Then either M contains an infinite-dimensional closed subspace which is isomorphic to a subspace of some X_1 or M contains a subspace isomorphic to P.

Proof. Let Q_i be the map of X into X_i given by $Q_i([x_i]) = (0, 0, \ldots, 0, x_i, 0, \ldots)$, where x_i occurs in the i-th position. Let M be an infinite-dimensional closed subspace of X. If any Q_i has a bounded inverse on an infinite-dimensional closed subspace of M, then M contains an infinite-dimensional closed subspace isomorphic to a subspace of X_i and we are through. Thus we may assume that each Q_i is strictly singular (§6, p. 76) and in this case $P_n = \sum_{i=1}^{n} Q_i$ is also strictly singular (§6, theorem III.2.4, p. 86). In particular, no P_n has a bounded inverse on M. We now use a standard gliding hump argument. Let y^i be any element of M of norm 1. Choose N_i so that

$$\left[\sum_{n \geq N_i} |y^i_n|^2 \right]^{1/2} < 1/2^i.$$

Since P_{N_i} has no bounded inverse on M, we can find an element y^i in M, $|y^i| = 1$, with $\|P_{N_i} y^i\| < 1/2^i$. Choose N_i so that

$$\left[\sum_{n \geq N_i} |y^i_n|^2 \right]^{1/2} < 1/2^i.$$

Continuing we obtain a sequence y^1, y^2, \ldots of elements of M and integers $N_1 < N_2 < N_3 < \ldots$ such that

(1) $|y^i_n| = 1$ for all n, and

(2) $\left[\sum_{n \geq N_i} |y^i_n|^2 \right]^{1/2} + \left[\sum_{n > N_i+1} |y^i_n|^2 \right]^{1/2} < 1/2^{i+1}$.

Define x^i by $x^i_n = y^i_n$ for $N_i < n < N_{i+1}$ and $x^i_n = 0$ otherwise. We have

$$\left| \sum a_i y^i \right| < \left| \sum a_i x^i \right| + \sup |a| \sum \|y^i - x^i\| \leq 2 \left[\sum |a_i|^2 \right]^{1/2}.$$

We also have

$$\left| \sum a_i y^i \right| - \left| \sum a_i x^i \right| - \sup |a| \sum \|y^i - x^i\| \geq (1/2) \left[\sum |a_i|^2 \right]^{1/2}.$$

Hence the map $T(a) = \sum a_i y^i$ is an isomorphism of P onto the subspace $\langle y^i \rangle$ of M.

We use Lemma 1 and Lemma 3 to give our example.

Example. For each i let X_i be the quasi-reflexive space described by James [§8]. Let $X = \sum X_i$ be the ℓ^1 sum of these spaces. Note that X is not quasi-reflexive since $X^{**} = \pi(X) \oplus P$. Then the space X has the property that any infinite-dimensional closed subspace of X contains a subspace isomorphic to the Hilbert space P.

Say that a Banach space X is *somewhat reflexive* if each closed infinite-dimensional subspace of X contains an infinite-dimensional reflexive subspace. From Lemma 2 we see that a quasi-reflexive space is somewhat reflexive and from Lemma 3 we see that the ℓ^1-sum of somewhat reflexive spaces is again somewhat reflexive. We do not know much about somewhat reflexive spaces. We ask, for example, whether the quotient or the conjugate of a somewhat reflexive space must be somewhat reflexive. It is interesting, however, that some of the results of [§4] proved there for quasi-reflexive spaces, are true for the somewhat larger class of somewhat reflexive spaces.

Lemma 4. Let X be a somewhat reflexive space as defined in the above paragraph.

(1) If X has an unconditional basis, then X is reflexive ([§4], corollary 4.5, p. 910).

(2) Any bounded linear map of X into l^1 is compact ([§4], theorem 5.1, p. 911).

Proof. If X has an unconditional basis which is not reflexive contains a copy of either c_0 or l^1 ([§5], theorem 4, p. 76), neither of which is somewhat reflexive and (1) follows.

We claim that there is a non-compact continuous linear operator from X to l^1 if and only if there is a continuous projection of X onto a subspace isomorphic to l^1. Result (2) follows from this. To see that the claim is true, suppose that X contains no complemented subspace isomorphic to l^1. Then by ([2]), theorem 4, p. 155, X^* contains no subspace isomorphic to c_0. Since l^1 is a space of type $C(\mathbb{S})$, each map from l^1 to X^* is weakly compact by [§11], theorem 1, p. 35. Thus the conjugate of each map from X to l^1 is weakly compact and so each map of X to l^1 is itself weakly compact. Weak and norm convergence are the same for sequences in l^1 ([11], p. 137) and so each weakly compact map with range in l^1 is compact. The converse is obvious; hence our claim is verified.

References

Perron’s integral for derivatives in L'

by

L. Gordon (Chicago)

Introduction. The notion of the classical Perron integral is by now very familiar. It is based on the notions of major and minor functions and of upper and lower Dini derivates and serves the purpose of showing that an exact and finite classical derivative of a function is integrable and the function itself is the indefinite integral of the derivative. Since the time the Perron integral was initially introduced the notion of derivative has developed and has undergone various generalizations. Every generalization of the derivative can serve as a basis of generalization of Perron’s integral. The idea is not new. As far back as 1932 (see [1]) Burkill developed a theory of Perron integration based on approximate derivatives. There also have been other generalizations. Here we return to this topic but base the theory of the Perron integral on the notion of derivative — and derivatives — in the metric L'. The notion of derivation in L' has been introduced by Calderón and Zygmund [4] and unlike the idea of the approximate derivative has proved to be quite effective in applications (partial differential equations, area of surfaces, etc.). It seems likely that Perron’s integral based on that notion deserves study. I would like to add that though the results of this paper have points in common with earlier results, the extension is not entirely routine.

The present paper consists of three parts. In the first part we define the notion of Dini derivates in the metric L' (briefly, L'-derivates) and prove a number of properties well known for the classical derivative (and in particular to Denjoy and Lusin). In the second part, using previous results, we develop the theory of Perron’s integral for derivates in L'. In the third part we give applications to Fourier series.

The author gratefully acknowledges the help and guidance of Professor A. Zygmund in the preparation of this paper.

PART I

1. Definitions and elementary properties of L'-derivates. Let $f(x)$ be finite and real-valued in an interval (a, b). (In what follows, unless