Title
Imaging of methioninase-induced S/G(2)-phase-trapping for subsequent effective chemotherapy

Permalink
https://escholarship.org/uc/item/0cm393gc

Journal
CANCER RESEARCH, 73(8)

ISSN
0008-5472

Authors
Yano, S
Tome, Y
Digman, M
et al.

Publication Date
2013-04-15

DOI
10.1158/1538-7445.AM2013-3412

License
CC BY 4.0

Peer reviewed
Abstract 3412: Imaging of methioninase-induced S/G\textsubscript{2}\text{-phase-trapping for subsequent effective chemotherapy.

Shuya Yano, Yasunori Tome, Michelle Digman, Masashi Momiyama, Atsushi Suetsugu, Enrico Gratton, Robert M. Hoffman

DOI: 10.1158/1538-7445.AM2013-3412 Published 15 April 2013

Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC

Abstract

Methionine-dependence of cancer cells may be due to excessive methylation reactions in cancer cells. Deprivation of methionine α,γ lyase (methioninase or METase) selectively arrests cancer cells during late S-phase, where they are highly sensitive to DNA-damaging chemotherapy. Fluorescent ubiquitination-based cell cycle indicator (FUCCI), was used to monitor the onset of the S/G2-phase block due to methionine deprivation effected by METase. The S-phase-blocked cancer cells fluoresced yellow or green, in contrast to cancer cells in G\textsubscript{1} which fluoresced red. Cancer cells, synchronously blocked in S-phase by METase and identified by their yellow-green fluorescence, were administered DNA-damaging chemotherapy drugs such as doxorubicin, cisplatin, or 5-fluorouracil. Treatment of cancer cells with drugs only without methioninase-effected S-phase synchrony, led to the majority of the cancer cell population being blocked in G\textsubscript{0}/G\textsubscript{1} phase (red fluorescent) where they were resistant to the drugs. In contrast, METase treatment, followed by chemotherapy when FUCCI indicated the S/G2 block was highly effective for killing cancer cells. Color-coded chemotherapy, whereby the cell cycle of cancer cells is selectively and synchronously blocked in S-phase as identified by fluorescent reporters, may be a general approach to effective cancer treatment.

©2013 American Association for Cancer Research