Lawrence Berkeley National Laboratory

Recent Work

Title
CONTROL ROLLINS AND COOLING FOR ON-LINE PRODUCTION OF STRONG, TOUGH STEELS

Permalink
https://escholarship.org/uc/item/0cp3c0wk

Author
Thomas, G.

Publication Date
1988-11-01
Control Rolling and Cooling for On-Line Production of Strong, Tough Steels

G. Thomas

November 1988

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks.

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Control Rolling and Cooling for On-Line Production of Strong, Tough Steels

Gareth Thomas

Professor, Department of Materials Science and Mineral Engineering
University of California
and
Materials and Chemical Sciences Division
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, California 94720
USA

November 1988
CONTROL ROLLING AND COOLING FOR ON-LINE PRODUCTION
OF STRONG, TOUGH STEELS

Gareth Thomas

Professor, Department of Materials Science & Mineral Engineering
University of California
and Materials and Chemical Sciences Division
Lawrence Berkeley Laboratory
Berkeley, CA 94720

Abstract

Strong tough steels have been designed to produce microcomposite structures of fine grained auto-tempered lath martensite with untransformed austenite films between the laths. Such structures can be produced on-line in a hot mill by controlled rolling and cooling. The steels are based on Fe/Cr/Mn/C compositions which can be air hardenable, or for lean compositions, water quench hardened with Nb microalloying. The steels have excellent mechanical properties that are superior to current HSLA steels and require no subsequent heat treatment following rolling and cooling. Successful commercial plate trials have occurred.

1. INTRODUCTION

There are current needs to optimise and conserve raw materials and energy, such that physical metallurgists and engineers are challenged to improve the mechanical properties of engineering alloys, in particular steels, and also to minimise high capital costs of new processing facilities. The major difficulty in optimising strength, toughness, and ductility in alloys comes from the fact that strength is usually inversely related to toughness and ductility. The increase in the former is achieved at the expense of the latter and vice versa, as illustrated in fig. 1. This is true in the majority of cases when relatively inexpensive alloying elements and processing are sought for practical alloy development. This concept has been the basis for the alloy design program for nearly two decades now at Berkeley (see e.g. refs. 1-7), a program which optimises ranges of mechanical properties through control of microcomposite microstructures. The steels considered here are those where the primary applications are for structures, mining, and in defense. These applications require steels with high strength for load bearing, and high toughness and ductility to resist crack propagation and to ensure good formability. For mining and agricultural applications, wear and corrosion resistance are significant properties also (8-11).

2. Alloy Design, Processing & Structure - Property Relations

It is important to recognize the differences between crack initiation (Cv) and crack propagation (Kic) toughnesses. These properties often appear to relate inversely, as when considering grain size effects and austenitising temperature to obtain all carbides in solution (12,13). In designing for toughness against crack propagation, high Kic values are required. A simple relation exists between critical flaw size ac, stress σc, and Kic as follows:

\[a_c = \frac{1.2}{\sigma_c} \left(\frac{K_{ic}}{\sigma_c} \right)^2 \]

In fig. 3, this relationship is plotted for three steels having a similar yield strength but with different Kic values. For a critical crack size of 0.25 cm, it is clear that the steel with Kic of 100 MPa√m can tolerate such a crack up to the yield limit, whereas a 4340 or EN24 steel can only tolerate such a crack at stresses only about 30% of its yield strength. Thus, the aim of the research has been to raise the toughness levels of structural steels for yield strengths ~ 1200 MPa to produce them on-line in an economical manner. In the present work the steels can all give at least 100 MPa√m Kic values. In our alloy design program, the principles of composites (viz, mixing ductile and strong, tough phases with
coherent or semi-coherent interfaces) have been utilized (1) with the development of medium carbon Fe-Cr-Mn HSLA steels which can be processed to give high strength and toughness in a refined microstructure. The latter are composites of a strong, tough auto-tempered dislocated lath martensitic phase (major phase) and hence Ms>200°C and a softer, tough austenite phase as illustrated in Fig. 2. The advantages of further refinement with niobium have also been investigated as recently outlined (14). The current efforts of our research have paid attention to relating laboratory experiments to possible plant operations and this is the topic of the present paper.

The Cr range varies from 2-12% with the high Cr values being designed for improved corrosion resistance, e.g., in precious metal mining conditions where the environment is very acid. Strength and hardness is determined mainly by carbon content and Mn which is more economical than Ni helps in the stabilization (1,6) of the interlath austenite, in addition to adding hardenability. Thus, desulphurizing should be effective to avoid Mn sulphones, not only for toughness requirements but also to allow Mn to do its function. Molybdenum, where necessary (cost factors), is also beneficial for strength and temper resistance (2). For HSLA steels with leaner compositions, e.g., Fe/2Cr/1Mn/0.25C microalloying with Nb is beneficial (14) in not only refining austenite grain size but by increasing hardenability as is evident from the CCT diagram of fig. 5. The steels are designated QT n where the number n refers to the Cr content (n=2,4,8,10, etc.) Solution treatments of ~1150°C are suitable for these Fe/Cr/Mn/C steels since iron and chromium carbides are not difficult to dissolve (unlike other alloying elements, e.g., Ti). For the Nb bearing steels soaking at 1200°C is needed. The subsequent rolling-recrystallisation processing allows a refined microstructure to be achieved. Figure 6 shows schematically the processing procedures developed for the air and water quench hardenable steels (QT 10 and QT 2 + Nb). Unlike the control rolling accelerated cooling methods used for low carbon (ferritic) steels, the object of the present work is to finish rolling just above the austenite recrystallisation temperature, so as to obtain fine grained austenite and thus fine packet martensite on subsequent quenching.

With the increasing potential application for structural steels in a "dynamic" structure (where the resistance to fatigue plays an important role), such as machinery in the mining industry, the fatigue properties are also significant. The latter are now being analysed to avoid the possibility that an increase in K_{IC} toughness is obtained at the expense of fatigue properties. Results on QT 2 alloys have shown that variations in fracture toughness (K_{IC}) from 65 MPam$^{1/2}$ to 198 MPam$^{1/2}$ with Mn content and tempering conditions, appear to have little effect on the "mid-range" of crack growth rates exceeding 5 x 10^{-6} mm/ cycles (fig. 4). In addition, the experimental steels have better fatigue resistance in the medium crack growth range than commercial steels AISI 4340 and 300M for the same heat-treatment conditions such as in the as-quenched or 200°C tempered states, as shown in fig. 8. The determination of the fatigue limit of the leaner alloys, e.g., QT 2 with and without Nb is in progress and will not be discussed further here.

Many of the uses of structural steels require not only good strength-toughness characteristics, but also good wear corrosion resistance. As part of the alloy design program, both sliding and abrasive wear behavior have been examined and measured for our microcomposite steels (9-11). The results show that the duplex martensite/austenite microstructures exhibit good wear-resistance in both categories of wear, and are superior to many commercial alloys that are described as wear-resistant alloy. More recently, the sliding wear behavior of these steels
has been further enhanced by laser surface hardening. Using a 500 watt. continuous CO₂ laser, localized, rapid heating and quenching can be confined to the surface of the alloys, producing a hardened, grain-refined microstructure to depths of 500 microns and hence, a two-fold increase in wear resistance (17). Consequently, materials with a fine-scale microstructure and a high yield strength in the absence of large undeformable particles, appear to be the most wear resistant.

In order to meet production hot mill plant requirements, plants with no accelerated cooling facilities will require steels with higher alloy compositions to be air hardenable in order to obtain the desired microstructures (fig. 2), e.g., Fe/10Cr/1Mn/0.2C (18). Such a steel is air hardenable to ¼ 40 cm thickness. For plants with water cooling capabilities typical quench rates are ~30°C/sec. In this case leaner alloys with microalloying, e.g., 0.02% Nb (14) with Fe/2Cr/1Mn/0.25C compositions are suitable for final thicknesses up to 25-30 mm. In the latter case, by controlling the finish roll temperature (optimum is 900°C) and cooling (quench) rate, with arresting the quench above Mf, (to allow auto tempering) it is possible on a commercial plate mill to achieve the composite microstructures and properties on-line without subsequent tempering. This approach is important for many plate applications and represents potential cost savings compared to post rolling heat treatment procedures. Of course, subsequent tempering will always raise the toughness. The specific procedures adopted depend on the properties and applications desired.

3. Results and Discussion

Table 1 summarise some representative properties that have been obtained for a range of compositions optimised using the criteria described above. On-line rolling data are compared to laboratory results. Figures 7, a,b, show the strength-toughness-property relationships for the complete range of alloys studied. For on-line controlled rolling and cooling, figure 8 shows the marked effect of finish roll temperature on toughness. This temperature should be > 870°C, i.e., the recrystallisation temperature for this austenite. Typical grain sizes (prior austenite) are in the range ASTM 7-9. Figure 9 shows the microcomposite structure. The results are encouraging as the properties attainable on-line, in commercial plants are very good, and appear to be attainable at reasonable cost, without complex processing routes and to be tunable to specific applications. The mechanical properties are also well matched to other properties, e.g., good corrosion resistance at high strengths and toughnesses are expected for the QT 10 series of steels, (4), as well as wear resistance. Good weldability has already been demonstrated (14).

The stability of the microstructure determines the final range of applicability of any material. In the present series of steels, autotempering allows formation of intralath carbides without the interlath austenite decomposing to carbide, which, if this occurs, leads to temper martensite embrittlement. Then this structure very closely resembles upper bainite which of course must be avoided, so that the steels must have enough hardenability. The steels are temper resistant to the range 250°C-400°C depending on composition (6,7).

A model for the good toughness has been proposed earlier (7) and is illustrated in fig. 9. The coherent or semi-coherent austenite-lath martensite interface, as well known from the K-S crystallographic relationships (1), allows slip to cross both phases so large plastic zones can occur ahead of growing cracks. If, however, there is no "buffer" film of austenite, but rather interlath carbides, a small plastic zone is possible and hence, low KIC values. Thus, the path of
growing cracks will be determined by the morphology of the structure (fig. 9). Mechanical stability of the austenite is also important. Silicon has been found to destabilize austenite near high stress fields, e.g., at crack tips. The austenite then transforms to high carbon twinned martensite which is also embrittling. Thus, silicon is not recommended as a deoxidiser, but rather Al. Also, since austenite has a high solubility for many elements, e.g., \(H_2 \), these steels may be quite tolerant to impurities.

Finally, by increasing carbon it may be possible to achieve very much higher combinations of hardness and toughness than are available at present.

Summary
This research has indicated that microstructural control of steels is possible online in a modern hot mill so as to achieve microcomposites of martensite-austenite in a fine packet morphology. The benefits of Nb additions to leaner alloys has been demonstrated. Many commercial applications of these principles of the alloy design processing criteria appear to be feasible, and the results are attractive when compared to other existing steels (fig. 10) which may also be much more expensive, (e.g., maraging).

Acknowledgement
This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, MCSD Division, of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. Thanks are due to all the researchers and graduate students who have been involved in this project for the past 15-20 years. Steels have been provided by various companies, notably Allegheny-Ludlum, ISCOR, South Africa, Posco, S. Korea. The cooperation of ISCOR and Dillingen (West Germany) for plant trials, and for making their data available is very much appreciated.

References
10. C.K. Kwok and G. Thomas, ibid, 140.
11. C.K. Kwok and G. Thomas, ibid, 612.
Fig. 1 Schematic diagram illustrating conflicting properties of strength and toughness arising from conventional strengthening methods. By using microcomposite structures toughness can be improved.

Fig. 2 Schematic of desired microcomposite microstructure of autotempered packet lath martensite and continuous, stable, interlath martensite.

Fig. 3 Plot of critical flow size vs. design stress for steels of similar yield strength.

Fig. 4 Fatigue crack growth data for QT 4, AISI 4340, and 300 M steels.
Fig. 5 CCT diagrams for QT 2, with and without Nb. (0.02%).

Fig. 6 Schematic showing processing routes for on-line production of microcomposite steels.

Fig. 7 Summary of data for charpy (a) and K_{IC} (b) properties of QT steels.
Fig. 8 Effect of finish roll temperature on charpy data for QT 10 steel.

Fig. 9 Schematic to show effect of microstructure on plastic zone and crack paths.

Fig. 10 Electron microscopy showing as cooled structure of QT 10 steel: (a) bright field, (b) dark field- interlath austenite, (c) darkfield- intralath M3C.
Fig. 11 Comparison of charpy toughness-UTS properties for commercial steels (data from ASM handbook Vol. 1, 9th ed.) and QT 10. Data for QT 2 is similar to QT 10.

Table 1
SOME REPRESENTATIVE MECHANICAL PROPERTIES OF Fe/Cr/Mn/C [QUATOUGH] STEELS

<table>
<thead>
<tr>
<th>Alloy/Processing</th>
<th>Charpy Impact Energy, Joules (longitudinal)</th>
<th>UTS MPa</th>
<th>Yield MPa</th>
<th>Hardness RC MPa</th>
<th>KIC MPa.m^1/2</th>
<th>%Elongation</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>QT2, Fe-2Cr-25C-1.2Mn</td>
<td>90</td>
<td>1600</td>
<td>1375</td>
<td>45-49</td>
<td>130</td>
<td>13.3</td>
<td>rounds, bars, plate mining, fasteners, agriculture eq., etc.</td>
</tr>
<tr>
<td>QT2, Q+200°C</td>
<td>120</td>
<td>1450</td>
<td>1111</td>
<td>45</td>
<td>145</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>QT2+Nb(0.02) hot rolled*</td>
<td>92</td>
<td>1450</td>
<td>1192</td>
<td>45</td>
<td>155</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>QT4, As Quenched Fe-4Cr-3C-2Mn</td>
<td>39</td>
<td>1680</td>
<td>1465</td>
<td>49</td>
<td>ND</td>
<td>3.6</td>
<td>landing gear, structure, steel, ordnance, pressure vessels</td>
</tr>
<tr>
<td>Q+T200°C</td>
<td>55</td>
<td>1620</td>
<td>1340</td>
<td>49</td>
<td>166</td>
<td>6.5</td>
<td></td>
</tr>
</tbody>
</table>

QT10 Fe-10Cr-2C-1Mn

<table>
<thead>
<tr>
<th>Processing</th>
<th>UTS MPa</th>
<th>Yield MPa</th>
<th>Hardness RC MPa</th>
<th>KIC MPa.m^1/2</th>
<th>%Elongation</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot rolled, OQ</td>
<td>25</td>
<td>1685</td>
<td>1400</td>
<td>49</td>
<td>ND</td>
<td>5.0</td>
</tr>
<tr>
<td>OQ+T200°C</td>
<td>68</td>
<td>1515</td>
<td>1350</td>
<td>47</td>
<td>ND</td>
<td>15.0</td>
</tr>
<tr>
<td>OQ+T200°C</td>
<td>55</td>
<td>1550</td>
<td>1260</td>
<td>47</td>
<td>ND</td>
<td>13.5</td>
</tr>
<tr>
<td>hot rolled, AC</td>
<td>57</td>
<td>1485</td>
<td>1375</td>
<td>46</td>
<td>ND</td>
<td>9.0</td>
</tr>
<tr>
<td>AC+T200°C</td>
<td>110</td>
<td>1450</td>
<td>1275</td>
<td>44</td>
<td>ND</td>
<td>16.0</td>
</tr>
</tbody>
</table>

* Trials at Dillingen Huttenwerke Plate mill, West Germany.
OQ oil quenched; AC air cooled
QT is the trademark "Quatough" for these steels.
The number after QT refers to the Cr content in wt.%.
ND, Not determined