Title
Analysis of root-to-shoot translocation of Cd in rice cultivars using a positron-emitting tracer imaging system

Permalink
https://escholarship.org/uc/item/0cq8v3nb

Authors
Ishikawa, Satoru
kuramata, Masato
Abe, Tadashi
et al.

Publication Date
2009-04-14

Peer reviewed
Recently, positron-emitting nuclides have been used in plants to study the behavior of metals such as 52Fe, 52Mn, and 62Zn using a positron-emitting tracer imaging system (PETIS) (Watanabe et al., 2001). The tracers of 105Cd and 107Cd which are positron-emitting nuclides have been developed and are being applied to plants for visualizing the movement of Cd in real-time (Fujimaki et al., 2006). In the present study, we used PETIS to analyze the real-time translocation of Cd in 6 rice cultivars with different Cd accumulation in upper parts including grains.

We previously selected three rice cultivars ($Oryza sativa$ L., $indica$ type, cvs. Cho-ko-koku, Jarjan, Anjana Dhan) with extremely high Cd concentration in grains and shoots, while three major $japonica$ cultivars in Japan (Nipponbare, Koshihikari, and Sasanishiki) showed a lower Cd concentration in these parts (Uraguchi et al., 2009). Six cultivars were grown in a hydroponic culture for 20 days, and then the seedlings were transplanted to plastic syringes containing 0.5 mM $CaCl_2$ solution. PETIS analysis was started by adding purified 107Cd (half-life 6.5h) with 0.1μM Cd as a carrier to 0.5 mM $CaCl_2$ solution. Time-series images of the 107Cd distribution were monitored simultaneously in 6 rice cultivars.

The serial images obtained from PETIS revealed that 107Cd first appeared at the basal portion of the shoot within 2h after 107Cd exposure. This was similar pattern to 52Mn and 52Fe in barley, suggesting that this region may play an important role in heavy metal distribution in graminaceous plants (Tsukamoto et al., 2009). The strength of 107Cd signal at the basal portion was much greater in $indica$ cultivars than in $japonica$ ones during 107Cd exposure. 107Cd accumulated increasingly at the upper portion of the shoot in $indica$ cultivars with time, while the signal of 107Cd was less in $japonica$ cultivars. Thus, the positron emitter of 107Cd was very useful isotope for studying the real-time behavior of Cd in rice plants and we first succeeded to visualize the difference in the real-time translocation of Cd among rice cultivars showing different shoot Cd accumulation. Taken together, these results suggest that different pattern of root-to-shoot translocation of Cd is responsible for genotypic variation in the shoot Cd concentration in rice.

References