Title
NON-LINEAR CLOCK FOR DIGITIZERS

Permalink
https://escholarship.org/uc/item/0d0387h3

Author
Nakamura, M.

Publication Date
1978-03-01
NON-LINEAR CLOCK FOR DIGITIZERS

M. Nakamura

March 1978
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Non-Linear Clock for Digitizers*

M. Nakamura

Lawrence Berkeley Laboratory
University of California
Berkeley, California

March 1978

ABSTRACT

A digital method for generating pulses whose frequency varies with time is described. The variation of frequency obtained is stable, controllable and predictable. These pulses used in conjunction with time or charge digitizers allow measurements over a wider range of time or energy in a digitizer having memory or buffer store of a limited number of bits or channels. A mathematical relationship between a non-linear clock and an equivalent linear clock is given which makes this method extremely flexible and useful.

*This work was supported by the General Science and Basic Research Division of the Department of Energy under Contract No. W-4705-ENG-48.
Introduction

Many time or charge digitizers operate by charging a capacitor to a voltage proportional to time or energy and linearly discharging the capacitor to a predetermined level\(^1\). Other digitizers\(^2,3\) compare the capacitor voltage to a linear ramp. Pulses generated during the discharging or capacitor voltage/linear ramp comparison period are counted in a scaler, and the number of pulses is directly proportional to the voltage amplitude stored in the capacitor. In instances where the time interval to be measured is long compared to the clock period, the clock pulses are used for a time base, and the time interval is measured directly. Excellent performance of digitizers is obtained because stable clock and very linear, stable discharge circuits and stable discriminators are readily available.

There are occasions when the count capacity associated with the digitizer is too small for the time or energy range of interest and the resolution required. The use of larger memory size is sometimes too costly. Luckily, the more stringent requirements for high resolution usually occur for lower amplitude voltage pulses which correspond to the shorter time intervals and lower energies. Non-linear digitization techniques can be used where the resolution for lower amplitude pulses is maintained, and the resolution of larger pulses is reduced by compression giving increased measurement range. Voltage controlled oscillators (VCO) or non-linear discharge circuits can be used to perform non-linear digitization. Unfortunately, VCO and non-linear discharge circuits which use analog techniques sacrifice the performance usually obtained in digitizers because of drift, non repeatability and some uncertainty to calculate time or energy directly from the digital results without calibration.

A digital method for generating non-linear clock pulses is described which maintains high resolution for lower amplitude pulses and allows for a larger time and energy range for the same number of bits or channels. The variation of clock frequency is stable, controllable and predictable, and the time or energy being measured can be directly calculated. The characteristics of stable clocks and linear, stable discharge circuits are maintained.
Non-Linear Clock

A system for digitally generating non-linear clock pulses is shown in Fig. 1(A) and the timing diagram for the system is shown in Fig. 1(B).

A Clear pulse resets both counters to zero. As a result the two counters are equal (A = B) and the Comparator output is asserted. When a Gate Control signal turns the Gated Clock on, a pulse increments Counter B and also generates a non-linear clock pulse. The non-linear clock pulse increments Counter A and resets Counter B. Now A and B are unequal and the Comparator output is low. Because Counter A now has a count of one, it requires two gated clock pulses into Counter B before the delayed compare output indicates A equals B. The delay insures proper operation of the system and eliminates race problems due to propagation delays. A second non-linear clock pulse is generated which increments Counter A to a count of two and resets Counter B. The Comparator is again unequal. It now takes three gated clock pulses to generate a third non-linear clock pulse, etc., etc.

The mathematical expression for the non-linear clock pattern generated is:

\[
\sum_{i=1}^{n} i = \frac{n(n+1)}{2}
\]

where \(i = 1, 2, 3, \ldots, n \), and \(n(n+1)/2 \) is the number of gated clock pulses required to produce \(n \) non-linear clock pulses (or the number of pulses required by a digitizer using a linear clock). A range compression ratio of \((n+1)/2 \) is obtained for the non-linear clock over a linear clock. The count stored in Counter A is the digitized value. In a system such as Lawrence Berkeley Laboratory's Large Scale Digitizer (LSD) System, the non-linear clock pulses would be directed to a number of digitizers simultaneously.

Figure 2(A) shows another configuration similar to Fig. 1(A) but where Counter A is shifted one bit to the left. The non-linear clock pulses are divided by two before comparison is made of Counters A and B. The timing diagram in Fig. 2(B) is similar to Fig. 1(B) and the explanation is left to the reader.
The mathematical expression for the non-linear clock pattern generated is:

\[\sum_{i=1}^{n} 2i = n(n+1) \] \hspace{1cm} (2)

where \(2i = 2,4,6, \ldots \ldots 2n \) and \(n(n+1) \) is the number of gated clock pulses required to produce \(2 \times n \) non-linear clock pulses. The compression ratio is \((n+1)/2 \) for \(2 \times n \) non-linear clock pulses.

Figures 3(A) and 3(B) show another configuration where Counter B is shifted one bit to the left as opposed to the configuration in Fig. 1(A).

The mathematical expression for the non-linear clock pattern is:

\[\sum_{i=1}^{n} (2i-1) = n^2 \] \hspace{1cm} (3)

where \((2i-1) = 1,3,5,7, \ldots \ldots (2n-1)\), and \(n^2 \) is the number of gated clock pulses required to produce \(n \) non-linear clock pulses. The compression ratio is \(n \).

Figures 4, 5 and 6 show other configurations which generate additional patterns of non-linear clock pulses.

The mathematical expression for Figs. 4, 5 and 6, respectively, are:

\[\sum_{i=1}^{n} 4i = 2n(n+1) \] \hspace{1cm} (4)

\[\sum_{i=1}^{n} [4(i-1)+1] = n(2n-1) \] \hspace{1cm} (5)

\[\sum_{i=1}^{n} 2(2i-1) = 2n^2 \] \hspace{1cm} (6)

General Equation

The general equation for a system consisting of a comparator and counters arranged in a manner similar to any of those in Figs. 1 through 6 is:

\[\sum_{i=1}^{n} a[b(i-1)+1] = an[\frac{b}{2}(n-1)+1] \] \hspace{1cm} (7)
where \(a\) = division factor for Counter A, and \(b\) = division factor for Counter B. The expression \([b(i-1)+1]\) obtains the spacing between pulses for any given value of \(i\) for the range \(i = 1, 2, 3, \ldots, n\), and \(a\) is the number of times the pulse spacing is repeated for value \(i\). The expression \(an^b[\frac{1}{2}(n-1)+1]\) derives the number of gated linear clock pulses required to produce \(a \times n\) non-linear clock pulses. Values for \(a\) and \(b\) for the configurations in Figs. 1 through 6 are indicated in each figure. The compression ratio is \(\frac{b}{2}(n-1)+1\) for \(a \times n\) non-linear clock pulses.

From the general equation above, a number of pulse train patterns can be tailored to meet measurement range and resolution requirements for a limited size of memory, dataway or buffer store. Table I tabulates the number of linear clock pulses required for \(a \times n\) non-linear clock pulses for some values of \(a\) and \(b\). Figure 7 plots the results of Table I and suggests how the shapes of the curves can be manipulated by the appropriate choice of coefficients \(a\) and \(b\). Coefficient \(b\) greatly influences the slope of the curves by determining the spacing between pulses while coefficient \(a\) dictates the number of times pulses are repeated at a given pulse spacing.

Although the examples shown in Figs. 1 through 7 show the coefficients \(a\) and \(b\) being manipulated in a binary (1, 2, 4, 8, \ldots) manner, the coefficients \(a\) and \(b\) can be any integer desired with appropriate circuit modifications.

Equivalent Linear Clock Determination

It is usually convenient to convert the non-linear clock number (NLC) into its equivalent linear clock number (LC) before one tackles the task of analyzing data.

If one takes the equation:

\[
\frac{NLC}{a} = n + R ,
\]

one can determine \(n\) and the remainder \((R)\). By examining Eq. (7) one can derive an expression for calculating the equivalent linear clock number, which is:

\[
LC = an^{b}[\frac{1}{2}(n-1)+1] + aR[bn+1] ,
\]
where \(aR[bn+1] = aR[b(n+1)-1]+1\) is derived from the expression on the left hand side of Eq. (7).

Let us take an example. Let \(NLC=500\), \(a=64\) and \(b=1\). What is \(LC\)?

From Eq. (8) \(n\) and \(R\) are determined by:

\[
\frac{NLC}{a} = \frac{500}{64} = 7.8125 ,
\]

(10)

where \(n=7\) and \(R=0.8125\), and substituting into Eq. (9) we get:

\[
LC = 64 \times 7 \left[\frac{1}{2} (7-1)+1 \right] + 64 \times 0.8125 \times 1 \times 7 + 1 = 2208
\]

(11)

Let us take another example where \(NLC=400\), \(a=512\) and \(b=2\). What is \(LC\)?

\[
\frac{NLC}{a} = \frac{400}{512} = 0.78125 ,
\]

(12)

where \(n=0\) and \(R=0.78125\), and substituting into Eq. (9) we get:

\[
LC = 512 \times 0 \left[\frac{2}{2} (0-1)+1 \right] + 512 \times 0.78125 \times 2 \times 0 + 1 = 400.
\]

(13)

One can verify the results by examining Fig. 7

Logarithmic Clock

It is easy to see that other devices might be substituted for Counter A to derive different patterns of pulses which one may wish to generate in special cases. A reversible scaler, programmable read-only memory (PROM) and shift register are a few such devices which may be substituted.

The shift register, when substituted for Counter A, generates a logarithmic pattern. See Fig. 8. The shift-in input to the shift register is held at a logical one. A timing pattern similar to that of Fig. 1(8) is generated. The delayed compare output is asserted when Counter B equals the shift register contents, and a clock pulse is allowed through the "AND" gate. Since the shift register contents progress in a 0, 1, 3, 7, 15, 31 . . . manner, the pattern generated is logarithmic, and the equation for the system is:

\[
\sum_{i=1}^{n} 2^{(i-1)} = 2^n - 1 .
\]

(14)
Again, as in the examples before, more flexibility is gained by placing a divider before the shift register. This allows one to manipulate the non-linear clock vs. linear clock relationship in a manner similar to that shown in Table I and Fig. 7. The equation for this relationship is:

\[\sum_{i=1}^{n} a[2^{i-1}] = a[2^n-1] \]

(15)

where \(a \) = division factor of divider placed before the shift register. The shape of the curves relating non-linear clock pulses to linear clock pulses (as in Fig. 7) is logarithmic, and the coefficient \(a \) is chosen to fit the time or energy range into the capacity of the memory, dataway or buffer. The generation of a table and plot can easily be done by following the example of Table I and Fig. 7, and the exercise is left to the reader.

Drawing from the past examples [Eqs. (8) through (13)], the equivalent linear clock number \((LC_1) \) can be determined from the logarithmic clock count. First, \(n \) and \(R \) are determined from Eq. (8). Then \(n \) and \(R \) are substituted into the following equation:

\[LC_1 = a[2^n-1] + aR[2^n], \]

(16)

which is derived by examination of Eq. (15).

The usefulness of a logarithmic clock does not require any elaboration.

Conclusions

A flexible, predictable and controllable pattern of non-linear pulse trains can be generated by a digital method. The pulses generated can be made as stable as any linear clock. Because a digital method is used for producing the clock pulses, digitizers can maintain their very linear and stable characteristics. From a general equation one can tailor a configuration of comparator and counters and/or other devices to give reasonable resolution and increased time or energy range for any given memory or dataway size. A precise, mathematical relationship between a non-linear clock and a linear clock is given which allows one to compute results directly from the non-linear clock information.

Acknowledgements

Discussions with S. R. Olson and R. C. Jared are gratefully acknowledged.
References
Figure Captions

Fig. 1 Non-linear clock pulse train generator
 (A) Circuit configuration
 (B) Timing diagram

Fig. 2 Non-linear clock - Counter A divides by two
 (A) Circuit configuration
 (B) Timing diagram

Fig. 3 Non-linear clock - Counter B divides by two
 (A) Circuit configuration
 (B) Timing diagram

Fig. 4 Non-linear clock - Counter A divides by four

Fig. 5 Non-linear clock - Counter B divides by four

Fig. 6 Non-linear clock - Both Counters A and B divide by two

Fig. 7 Plot of non-linear clock pulses vs. linear clock pulses.

Fig. 8 Logarithmic clock generator
Figure 2
XBL 783-7532
A gate control signal is shown controlling a gated clock, which is fed into a counter labeled 'A'. A comparator takes the output of the counter and compares it with the output of another counter labeled 'B'. The diagram shows the waveforms for clear, gate control, gated clock, counter A, delayed compare A-B, counter B=1, counter B=2, and non-linear clock. The figure is labeled as Figure 3 XBL 783-7533.
Fig 4

Fig 5
Fig 6

Fig 7
Fig 8
<table>
<thead>
<tr>
<th>n</th>
<th>(\text{No. of Non-Linear Clock Pulses} (a \times n))</th>
<th>Number of Non-Linear Clock Pulses</th>
<th>(b=1)</th>
<th>(b=2)</th>
<th>(b=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64</td>
<td></td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>128</td>
<td></td>
<td>192</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>192</td>
<td></td>
<td>384</td>
<td>576</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td></td>
<td>640</td>
<td>1024</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>320</td>
<td></td>
<td>960</td>
<td>1600</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>384</td>
<td></td>
<td>1344</td>
<td>2304</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>448</td>
<td></td>
<td>1792</td>
<td>3136</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>512</td>
<td></td>
<td>2304</td>
<td>4096</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>576</td>
<td></td>
<td>2880</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>640</td>
<td></td>
<td>3520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>704</td>
<td></td>
<td>4224</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.