Lawrence Berkeley National Laboratory
Recent Work

Title
NEW CONTROL TECHNIQUES FOR EXTRACTION OF BEVALAC BEAMS

Permalink
https://escholarship.org/uc/item/0d390386

Author
Nyman, M.

Publication Date
1985-05-01
NEW CONTROL TECHNIQUES FOR EXTRACTION OF BEVALAC BEAMS

M. Nyman, W. Chu, B. Mehlman, W. Mirer, H. Oakley, T. Renner, G. Stover, and M. Tekawa

May 1985
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Beams of accelerated heavy ions can now be delivered as one-second-long DC pulses with minimal fluctuations in instantaneous flux. Pulse duration can be held constant to within 1% while keeping a high non-varying extraction efficiency which minimizes pulse-to-pulse position shift in the extracted beam. In addition, differing beam intensities over several orders of magnitude can be delivered. Computer adjustment of all measurement and control devices results in linear operation over three orders of magnitude of beam intensity. Control of beam structure is accomplished by a unique combination of dual slope integrators and phase forward "predictive" circuits in the feedback loop.

Beam Extraction

To explain how the stable long spill ("DC" aspect) is maintained, and the time structure ("AC" aspect) controlled, some background in the Bevalac and instrumentation is described below.

The Bevalac is a combination of two accelerators, the SuperHILAC (Heavy Ion Linear Accelerator) and the Bevatron. Ion species from hydrogen to uranium are pre-accelerated by the HILAC, and then transferred to the Bevatron for further acceleration and delivery to the end user. A set of attenuators may be plunged into the transfer line to control the quantity of beam reaching the Bevatron. The attenuators are limited to factors of 2, 3, 10, and 60, or combinations thereof. This, however, is fine enough resolution, since pulse intensity from the HILAC vary randomly by factors of 2 or 3.

The total intensity of circulating beam is measured before extraction by the BIE system (Beam Induction Electrode). The BIE system is limited by a dynamic range of approximately an order of magnitude, whereas the actual circulating beam to be measured may differ by many orders of magnitude, due to HILAC variation and attenuator settings. This can be overcome by ranging the BIE system before injection by predicting what is expected.

After acceleration, the RF system, which was used to accelerate the beam and maintain the circulating particles in a tight packet, is turned off. This allows the particles to spread out around the entire ring before extraction begins.

Once the beam has been carefully accelerated and stabilized at the maximum storage field, it must be extracted with equal care. This is accomplished using a process called resonant extraction. Resonant extraction induces horizontal betatron oscillations in the circulating beam by adjusting the synchrotron guide field for a resonant condition of two betatron oscillations per three radial turns of the beam. This condition is initiated by the mechanical insertion of a single magnet containing several independent coils. The main coil, P1, creates the resonant condition and pushes the machine's operating point toward extraction. The spiller coil, S1, controls the final betatron growth of the beam to the actual point of extraction. The field of P1 is present during tuneup to bring the Bevatron to the edge of extraction, possibly spilling a small quantity of beam by itself.

Control of current in S1 includes the use of a scintillator for feedback at F1, a location just outside the main ring. The scintillator incorporates a photomultiplier tube (PM tube) whose high voltage (HV) can be adjusted before injection for range control in a manner similar to the BIE system. An error signal is generated in the spiller chassis by summing the PM signal with a computer-generated spill rate reference (Ref.). The error signal is then conditioned independently for the "AC" and "DC" control before being recombined to form the S1 control signal. The overall system is shown in block diagram below Fig. 1.

Fig. 1 Bevalac spill control block diagram.

Abstract

Beams of accelerated heavy ions can now be delivered as one-second-long DC pulses with minimal fluctuations in instantaneous flux. Pulse duration can be held constant to within 1% while keeping a high non-varying extraction efficiency which minimizes pulse-to-pulse position shift in the extracted beam. In addition, differing beam intensities over several orders of magnitude can be delivered. Computer adjustment of all measurement and control devices results in linear operation over three orders of magnitude of beam intensity. Control of beam structure is accomplished by a unique combination of dual slope integrators and phase forward "predictive" circuits in the feedback loop.

Introduction

The LBL Bevalac is currently engaged in an upgrade of the beam extraction system. In the past, the beam has been delivered as a series of short bursts, each series lasting approximately half a second every 4 seconds. In some applications, we would like the Bevalac to produce a DC like spill of long constant duration pulses with all particles marching out equally spaced in single file. While this is unfortunately only a fantasy, we have demonstrated a close enough approximation for our needs.

As a result of the upgrade, the Bevalac can now deliver one-second-long DC pulses varying less than 1% while maintaining high-extraction efficiency (~50%) pulse (15 pulses/min.) which in turn results in exceptional pulse-to-pulse spatial stability at the target. A true continuous spill held close to the mean flux has also demonstrated with only occasional excursions, which themselves are controllable. The total flux delivered can be pre-selected by controlling the injected beam before acceleration.

Instrumentation

To explain how the stable long spill ("DC" aspect) is maintained, and the time structure ("AC" aspect) controlled, some background in the Bevalac and instrumentation is described below.

The Bevalac is a combination of two accelerators, the SuperHILAC (Heavy Ion Linear Accelerator) and the Bevatron. Ion species from hydrogen to uranium are pre-accelerated by the HILAC, and then transferred to the Bevatron for further acceleration and delivery to the end user. A set of attenuators may be plunged into the transfer line to control the quantity of beam reaching the Bevatron. The attenuators are limited to factors of 2, 3, 10, and 60, or combinations thereof. This, however, is fine enough resolution, since pulse intensity from the HILAC vary randomly by factors of 2 or 3.

The total intensity of circulating beam is measured before extraction by the BIE system (Beam Induction Electrode). The BIE system is limited by a dynamic range of approximately an order of magnitude, whereas the actual circulating beam to be measured may differ by many orders of magnitude, due to HILAC variation and attenuator settings. This can be overcome by ranging the BIE system before injection by predicting what is expected.

After acceleration, the RF system, which was used to accelerate the beam and maintain the circulating particles in a tight packet, is turned off. This allows the particles to spread out around the entire ring before extraction begins.

Once the beam has been carefully accelerated and stabilized at the maximum storage field, it must be extracted with equal care. This is accomplished using a process called resonant extraction. Resonant extraction induces horizontal betatron oscillations in the circulating beam by adjusting the synchrotron guide field for a resonant condition of two betatron oscillations per three radial turns of the beam. This condition is initiated by the mechanical insertion of a single magnet containing several independent coils. The main coil, P1, creates the resonant condition and pushes the machine's operating point toward extraction. The spiller coil, S1, controls the final betatron growth of the beam to the actual point of extraction. The field of P1 is present during tuneup to bring the Bevatron to the edge of extraction, possibly spilling a small quantity of beam by itself.

Control of current in S1 includes the use of a scintillator for feedback at F1, a location just outside the main ring. The scintillator incorporates a photomultiplier tube (PM tube) whose high voltage (HV) can be adjusted before injection for range control in a manner similar to the BIE system. An error signal is generated in the spiller chassis by summing the PM signal with a computer-generated spill rate reference (Ref.). The error signal is then conditioned independently for the "AC" and "DC" control before being recombined to form the S1 control signal. The overall system is shown in block diagram below Fig. 1.
"DC" and "AC" control of the beam centers on controlling SI, along with proper setup of instrumentation (BIE, scintillator), and the quantity of beam injected (attenuators). The "DC" aspect is managed by a computer program called "The Spill Management Program" (SMP), and controlled in real-time by a dual slope integrator in the feedback loop. The "AC" aspect is controlled only in real-time, using a combination of threshold, differentiator, and analog time-out circuitry in the feedback loop. The purpose of this is to predict the behavior of the spill and control it before it happens. Predictive control is essential because, once a particle is excited sufficiently for extraction, it may take 200-300 microseconds before it actually clears the septum to be extracted. Thus, once it has been detected that too much beam is being spilled and SI is shut down. particles will continue pouring out for another 200-300 microseconds, usually resulting in a flux spike many times greater than the mean spill level desired. A block detail of the spiller chassis in the feedback loop is shown below (Fig. 2).

![Fig. 2 Spiller chassis block diagram.](XBB 855-2402)

"DC" Control: The Spill Management Program (SMP) controls the attenuators, BIE range, and PM tube HV, and sets the spill rate reference (Ref.) which is summed with the PM signal in the spiller chassis. Before each pulse a beam intensity request is made by the user via a computer link. Based on an average of previous HILAC pulses, the program calculates attenuator settings such that injection will result in twice the circulating beam requested, accounting for the 50% extraction efficiency. The BIE range and PM HV is set to correctly read the expected beam. The beam is now injected, accelerated, and read by the BIE to determine the actual circulating intensity, and the Ref. is set proportionally to give a constant fixed length spill, based on the available beam. A "spill rate" knob is provided on the spiller chassis, and functions as a gain control on the computer-generated Ref. The effect of this knob is to control the spill length, since the amount of circulating beam is finite. Proper adjustment results in spilling approximately 90% of the extractable beam before the end of the 1-second spill time is over. 10% is then left circulating to ensure against short spills due to possible errors in instrumentation and control throughout the large dynamic range of operation.

When a single circulating beam pulse is measured and found either to far exceed the desired intensity, or to be insufficient for accurate control, the spill magnets SI and PI are clamped by the program and no beam is extracted. If this condition continues for several pulses it will affect the running average of injected beam, causing an adjustment of the attenuators.

The job of the dual slope integrator in the spiller chassis is to generate the required control profile for SI to produce the long spill. In general, SI is rapidly brought up to a point where spill begins, then slowly increased as the spill progresses. At the end of the spill, control is removed form SI and PI, causing the integrator to rise rapidly, but without any effect. See Fig. 3 below.

![Fig. 3 Upper trace: Inverted spill signal Lower trace: SI control signal](XBB 854-3519)

The positive and negative time constants of the integrator are designed such that it responds quickly to a positive signal, but slowly to a negative one of equal magnitude. (See Fig. 4 below). The response is quick to requests for increased spill (from the error signal), but virtually ignores the large commands to stop spill when massive spikes erupt from the machine. These spikes must be controlled by the predictive circuits, and not affect the longer-term control of SI. Some down slope integration is provided to handle the slight negative adjustments in the overall SI control function.

"AC" Control: Part of the spiller chassis controls the spill structure ("AC") by predicting the behavior of the beam, using the error signal which is the difference between the Ref. and the spill signals (spill + (-Ref.)). And since the Ref. is constant during the spill, the error signal reflects the spill. In terms of the spill itself, once it reaches...
a threshold, usually set near the Ref., the signal is
differentiated, to assess whether the spill rate is
still increasing. If it is increasing beyond some
minimum rate, a negative signal is generated
proportional to the rate increase, usually taking the
form of a sharp negative spike. Another circuit
ensures that this negative spike cannot exist more
than a few hundred microseconds. Summed with the
much more slowly varying signal of the dual slope
integrator, it causes Sl to shut down in proportion
to the anticipated spill spike. Because this
powerful negative feedback occurs early, the upcoming
spike can be snubbed before it gets out of hand.
(See Fig. 5.)

![Graph](image)

Fig. 5 Upper trace: Inverted spill signal
Middle trace: Sl control signal (note general
up slope of Integrator)
Bottom trace: Dual slope integrator response
only (magnified)

Conclusion

As seen in Fig. 5, the response of the Bevatron
is to attempt a few spill spikes before settling into
a 5-15 microsecond stable state. During this stable
time the spill wanders within a factor of 2 of the
desired rate, terminating with another set of small
spikes. Smoothing the spill structure ("AC") yields
an approximation of a "DC" spill, and may well
represent the first time the Bevatron has ever
produced anything resembling a continuous beam.
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.