Title
BIOLOGICAL EFFECTS OF ELF MAGNETIC FIELDS

Permalink
https://escholarship.org/uc/item/0d57r65x

Author
Tenforde, T.S.

Publication Date
1985
Published as a chapter in "Biological and Human Health Effects of Extremely Low Frequency (ELF) Electromagnetic Fields", American Institute of Biological Science Report, March 1985

BIOLOGICAL EFFECTS OF ELF MAGNETIC FIELDS

T.S. Tenforde

January 1985

This is a Library Circulating Copy which may be borrowed for two weeks.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
BIOLOGICAL EFFECTS OF ELF MAGNETIC FIELDS

T.S. Tenforde
Biology and Medicine Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

[Prepared for the American Institute of Biological Sciences
report on "Biological and Human Health Effects of
Extremely Low Frequency (ELF) Electromagnetic Fields"]

January, 1985

This work was supported by the American Institute of Biological Sciences and by the U.S. Department of Energy under Contract DE-AC03-76SF00098.
BIOLOGICAL EFFECTS OF ELF MAGNETIC FIELDS

T.S. Tenforde

Biology and Medicine Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

CONTENTS:

INTRODUCTION .. 2
ELF MAGNETIC FIELD INTERACTION MECHANISMS. 4
MAGNETOPHOSPHENES AND RELATED VISUAL STUDIES 10
RESPONSES OF NERVOUS TISSUES AND ANIMAL BEHAVIOR TO
ELF MAGNETIC FIELDS 13
ELF MAGNETIC FIELD EFFECTS ON CELLULAR, TISSUE AND
ANIMAL SYSTEMS. ... 18
ELF MAGNETIC FIELDS AND CANCER INCIDENCE 23
SUMMARY ... 26
CONCLUSIONS ... 28
TABLES ... 31
REFERENCES .. 44
INTRODUCTION

Time-varying magnetic fields in the ELF range below 300 Hz originate from both natural and man-made sources (Grandolfo and Vecchia, 1985). The largest time-varying atmospheric magnetic fields result from intense solar activity and thunderstorms, and can reach intensities of 0.5 μT during a major magnetic storm. Diurnally varying fields with maximum intensities of 0.03 μT are present in the atmosphere as the result of solar and lunar influences on ionospheric currents. Also present in the atmosphere are weak magnetic fields associated with the Schumann resonance phenomenon, in which fields produced by lightning discharges propagate at ELF frequencies within the resonant cavity formed by the earth's surface and the lower boundary of the ionosphere.

Man-made sources of ELF magnetic fields are numerous, and they exhibit a wide range of intensities from less than 0.1 μT to levels approaching 0.1 T in certain industrial settings. The sources of these fields include (1) ac power transmission lines and generators; (2) ac electrical and electronic devices used in industry, research facilities, and households; (3) video display terminals; (4) ELF communication systems; (5) induction heating processes such as welding and electrosteel production; and (6) medical applications of ac and pulsed fields for therapy of bone fractures and electromagnetic blood flow measurements. The magnetic field intensities to which humans are exposed from the first four of these sources are generally less than 50 μT, with the exception of fields near the surface of certain types of rotating equipment (e.g., drills and circular saws) and household items (e.g., hair dryers and electric shavers). These rotatory devices produce local fields in their immediate vicinity as high as 2 mT, but the magnetic field strength decreases rapidly as a function of distance from the surface (Gauger, 1984). Human
exposure to magnetic fields from high-voltage transmission lines and ELF communication systems is estimated to occur at levels less than 15 μT in the immediate vicinity of these installations (Scott-Walton et al., 1979; Valentino, 1984). The ELF magnetic fields from video display terminals at typical operator locations (Stuchly et al., 1983) and the ambient field levels at most locations within a household environment (Caola et al., 1983; Male et al., 1984) are generally less than 0.3 μT. By far the highest level of human exposure to ELF magnetic fields occurs in the industrial and medical technologies listed above as items 5 and 6. In a survey of electrosteel and welding industries in Sweden, the local magnetic fields near 50-Hz ladle furnaces were found to reach intensities of 8 mT, and intensities up to 70 mT were measured near induction heating devices associated with steel production (Lövsund et al., 1982).

In medicine, pulsed magnetic fields with ELF repetition rates and peak intensities of approximately 2 mT are being used for the treatment of bone fractures and arthroses (Bassett et al., 1974; Watson and Downes, 1978; Bassett et al., 1982). Solenoidal transducers that produce ELF magnetic fields with typical intensities of 5 to 10 mT are commonly used as a means of monitoring arterial blood flow during prolonged surgical procedures (Kolin, 1952; Mills, 1977). The rapidly switched gradient fields used in nuclear magnetic resonance (NMR) imaging devices also produce human exposure to time-varying magnetic fields (Margulis et al., 1983; Budinger and Lauterbur, 1984). This medical technology is in an early stage of development, and the magnetic field characteristics of future hospital-based NMR devices remains an active area of research.

A summary and critical evaluation of the literature describing biological effects of ELF magnetic fields will be given in this chapter. Various aspects
of this subject have been summarized in recent review articles and monographs (Sheppard and Eisenbud, 1977; Tenforde, 1979; Budinger, 1981; Adey, 1983; Tenforde, 1985a). The principal topics that will be discussed in this chapter are magnetic field interaction mechanisms, effects on vision (magnetophosphenes), the nervous system and animal behavior, and a summary of biological effects reported on diverse cellular, tissue and animal systems. A brief discussion will also be given of recent reports on cancer risk in humans exposed to ELF magnetic fields.

ELF MAGNETIC FIELD INTERACTION MECHANISMS

The fundamental physical interaction mechanisms of ELF electric and magnetic fields with living matter have been reviewed in the chapter by W.T. Kaune in this volume. For the specific case of ELF magnetic fields, the primary physical interaction mechanism is the induction of electric fields and currents in tissue in accord with Faraday's law. In its general form, Faraday's law can be written as

$$\oint \vec{E} \cdot d\vec{r} = - \frac{d}{dt} \iint \vec{B} \cdot d\vec{S}$$

(1)

where the line integral is around a closed curve and the surface integral is taken over the surface bounded by the closed curve. In eqn. (1), \vec{E} is the electric field intensity, $d\vec{r}$ is a differential length element directed along the curve over which the line integral is taken, \vec{B} is the magnetic flux density, and $d\vec{S}$ is a differential surface area element directed normal to the surface. For the specific case where \vec{B} is spatially uniform, eqn. (1) can be written as

$$E_{av} = (1/L) \oint \vec{E} \cdot \frac{d\vec{B}}{dt}$$

(2)
where E_{av} is the magnitude of the average electric field tangent to the closed curve, L is the total length of the curve, and \mathbf{S} is the surface area vector. If the closed curve is a circular loop of radius R, and the orientation of the loop is perpendicular to \mathbf{B}, then eqn. (2) simplifies to

$$E_{av} = (R/2) \frac{dB}{dt}$$ \hspace{1cm} (3)

For a sinusoidally varying field with a frequency f, eqn. (3) becomes

$$E_{av} = \pi f R B$$ \hspace{1cm} (4)

From Ohm's law, the average current density J_{av}, induced in a material with an average conductivity k_{av}, is given by

$$J_{av} = k_{av} E_{av}$$ \hspace{1cm} (5)

Equations (1) - (5) can be used to calculate the magnitude of a time-varying ELF magnetic field that would be expected to perturb the function of critical biological tissues such as the heart and the central nervous system. Using data from several sources, Bernhardt (1979) has estimated that the endogenous current densities associated with electrical activity of the brain and heart have lower limits of 1 and 10^{-5} mA/m², respectively, and perturbations of normal biological functions might be expected to occur in the presence of ELF magnetic fields that induce tissue currents above these levels. Consider for illustration a 60-Hz sinusoidal magnetic field that is normally incident on a circular loop of tissue with a radius of 0.06 m, comparable to the human heart, and an average conductivity of 0.2 S/m (Schwan and Kay, 1956). From eqn. (5) the amplitude of the magnetic flux density that would induce a
current density of 10 mA/m² is 4.4 mT. A similar calculation for brain tissue with an average conductivity (Bernhardt, 1979) of 0.1 S/m and a loop radius of 0.1 m, comparable to the human cranium, leads to the prediction that a current density of 1 mA/m² is induced by a 60-Hz magnetic field with an amplitude B_0 of 0.53 mT. Because ELF magnetic fields with intensities higher than 5 mT are present in the vicinity of certain types of instruments and industrial processes, the induction of tissue fields at levels that could potentially perturb biological functions is therefore possible.

ELF magnetic fields can also interact with biological tissues through orientational effects on paramagnetic substances with permanent magnetic moments (e.g., the magnetite inclusions in magnetotactic bacteria) and with macromolecular assemblies in which the summed diamagnetic anisotropy is large (e.g., the photopigment molecules of retinal photoreceptors). In considering the possible role of magneto-orientation phenomena in the biological interactions of time-varying magnetic fields, it is important to recognize that the frictional resistance to motion in biological tissues is high, and thus serves to damp out even low-frequency oscillations associated with time-varying magnetic orientational forces. This is illustrated by the fact that the orientation of diamagnetically anisotropic retinal photoreceptor outer segments in a 1-T static field occurs with a characteristic time of 4 s in water (Hong et al., 1971). A time-varying field with a frequency exceeding approximately 1 Hz would therefore be unable to induce a "flickering" orientational phenomenon in this system because the frictional drag force would not allow the motion of the retinal rods to keep pace with the oscillating field. A similar conclusion can be drawn for the interaction of paramagnetic entities such as magnetotactic bacteria with an ELF time-varying magnetic field. With the possible exception of quasi-static fields with frequencies in the range 0 to 1 Hz, it is therefore
probable that magneto-orientation phenomena play little if any role in the interaction of ELF magnetic fields with living systems. Similar conclusions can be drawn for the translational forces experienced by paramagnetic substances in an ELF magnetic field spatial gradient, and for the electro-mechanical force exerted by the electric fields induced in tissue by externally-applied ELF magnetic fields.

Another possible interaction mechanism of ELF magnetic fields that has recently been proposed is the distortion of counterion distributions at cell surfaces (Polk, 1984). The effect of introducing an inhomogeneity into the counterion atmosphere at the surface of a living cell, or along the length of a large organic macromolecule such as DNA, has not as yet been investigated experimentally. However, this interaction mechanism possesses the interesting property that the magnitude of the effect becomes frequency-independent when the frequency of the applied magnetic field is much greater than the dielectric counterion relaxation frequency. The existence of biological effects that are independent of the field frequency has recently been suggested on the basis of an increased rate of DNA synthesis that was observed in human fibroblasts exposed to sinusoidal magnetic fields with frequencies ranging from 15 Hz to 4 kHz, and intensities of 2.3 to 560 μT (Liboff et al., 1984). The lack of dependence of this effect on the time rate of change of the field, and hence on the induced current density calculated from Faraday's law, was tested for values of dB/dt that ranged from approximately 1.8 x 10^-4 T/s to 1.8 T/s. The extent to which this phenomenon may relate to other bioeffects of ELF magnetic fields remains to be studied.

An important factor to be considered in the response of biological systems to ELF magnetic fields is the waveform of the applied field. Numerous types of magnetic field waveforms have been used in biological studies, including both
sinusoidal and square-wave fields, and pulsed fields with burst repetition rates that lie in the ELF frequency range. For both square-wave and pulsed fields, two parameters of key importance are the rise and decay times of the signal, which determine the maximum time rates of change of the field and hence the maximum instantaneous current densities that are induced in living tissue. For example, a sharply rising square-wave magnetic field pulse will induce a peak current density in tissue that exceeds the value achieved with a sinusoidal field having the same r.m.s. intensity and fundamental frequency. Another factor that must be considered for waveforms with a rapid rise time is the skin depth. Magnetic fields with a rise time less than 10 ns will be attenuated at an air/tissue interface due to the finite skin depth and reflection losses. Pulses with such short rise times, however, are seldom used in biological studies.

A factor of major importance in determining the response of living systems to ELF magnetic fields with any type of waveform is the fundamental field frequency. The phenomenon of magnetophosphenes, which is discussed in the next section of this chapter, is limited to time-varying magnetic fields with frequencies less than approximately 70 Hz. The mechanism underlying the loss of sensitivity at higher frequencies has not been elucidated, but it is conceivable that the visual system cannot process and respond to induced electrical currents with frequencies above approximately 70 Hz. This hypothesis is supported by the fact that flicker fusion occurs in response to repetitive photic stimuli with frequencies above approximately 30 to 40 Hz. Although the frequency dependence of the biological response to time-varying magnetic fields has not been well characterized for systems other than the visual apparatus, it is conceivable that a similar dependence may exist in tissues such as the central nervous system and heart in which the endogenous
electrical activity has dominant frequencies that are less than 50 Hz.

Another aspect of ELF magnetic field interactions with living systems that merits discussion is the possible existence of "windows" of sensitivity in the frequency and/or intensity domains. The existence of window phenomena in biological tissues has been demonstrated for several types of electromagnetic fields, including millimeter waves, ELF electric fields, and radiofrequency radiation with amplitude modulation in the ELF range (Postow and Swicord, 1984). A comprehensive discussion of these ELF field effects is given in the chapter by M. L. Swicord in this volume. During the past two years, several reports have appeared in the literature suggesting that window phenomena may occur with ELF magnetic fields. The existence of windows of sensitivity in both the frequency and the intensity domain have been claimed in reports of teratogenic effects on chicken embryos exposed to weak, pulsed magnetic fields with repetition rates in the low-frequency range (Delgado et al., 1982; Ubeda et al., 1983). A window of frequency sensitivity extending from 3 to 50 Hz has been reported in studies on the mitogen-induced blastogenic response of human lymphocytes exposed to ELF square-wave magnetic fields (Conti et al., 1983). It has also been reported recently that a window of frequency sensitivity may exist in calcium ion efflux from chick brain tissue exposed to ELF magnetic fields (Blackman et al., 1984). The interpretation of these windowed responses to ELF fields is obviously complex, and numerous suggestions have been made of nonlinear physical mechanisms such as cooperative phenomena involving membrane dipoles, limit-cycle behavior of chemical oscillators, and solitons as possible nonthermal processes by which the effects of extremely weak electromagnetic fields could be amplified in biological systems (Postow and Swicord, 1985).

In the specific case of window phenomena associated with ELF magnetic fields, a further interpretive complication is posed by the apparent dependence
of these effects on the strength and direction of the geomagnetic field within
the exposed biological specimen (Blackman et al., 1984; Rozzell, 1984). The
suggestion has been made that low-field magnetic resonance effects could occur
in living matter, as indicated by dielectric measurements on yeast cells and by
measurements of bacterial growth and enzyme activity under magnetic resonance
conditions using fields with intensities comparable to the geomagnetic field
(Jafary-Asl et al., 1982). In such weak fields, several biologically relevant
electrolytes such as potassium and chloride ions may exhibit resonant
frequencies in the ELF range. However, further experimental tests of this
possible interaction mechanism, as well as the various nonlinear interaction
mechanisms mentioned above, must be undertaken before their relevance to ELF
magnetic field bioeffects can be assessed.

One final point that merits attention is the fact that totally linear
mechanisms such as induced Faraday currents may give rise to apparent window
phenomena. For example, at very low field frequencies (approaching dc) the
induced current densities in tissue may be too low to elicit an effect, while
at high frequencies the biological system may be unresponsive to the applied
stimulus even though the induced currents are large. In this context, it is
possible that the frequency range of 7 to 70 Hz over which magnetophosphenes
have been observed with suprathreshold field intensities might be considered as
a window of visual sensitivity without invoking interaction mechanisms other
than induced Faraday currents.

MAGNETOPHOSPHENES AND RELATED VISUAL STUDIES

One of the most extensively studied magnetic effects in living systems is
the induction of magnetophosphenes, in which a flickering illumination within
the visual field occurs in response to stimulation by pulsed or oscillating
magnetic fields with frequencies less than 100 Hz (d'Arsonval, 1896; Thompson, 1909-1910; Dunlap, 1911; Magnusson and Stevens, 1911-1912; Barlow et al., 1947; Seidel et al., 1968; Lövsund et al., 1979a, 1979b, 1980a, 1980b, 1981; Budinger et al., 1984). In subjects with normal vision, the maximum visual sensitivity to sinusoidal magnetic fields has been found at a frequency of 20 Hz (Lövsund et al., 1980b). At this frequency the minimum field intensity required to elicit phosphenes is approximately 10 mT (Lövsund et al., 1980b), which lies well above the range of ELF magnetic field levels generally encountered by man as discussed earlier in this chapter. The magnetophosphene visual sensation is completely reversible upon removal of the external magnetic field, and there have been no reports of harmful effects on the visual system.

Table 1 presents a summary of principal research findings on the properties of magnetophosphenes that have been reported since the discovery of this phenomenon by d'Arsonval in 1896. The locus of the magnetic field interaction that leads to phosphenes has been shown to be the retina on the basis of several lines of evidence: (1) magnetophosphenes are produced by time-varying fields applied in the region of the eye, and not by fields directed toward the visual cortex in the occipital region of the brain (Barlow et al., 1947); (2) pressure on the eyeball abolishes sensitivity to magnetically-induced phosphenes (Barlow et al., 1947); (3) the threshold magnetic field intensity required to elicit phosphenes in human subjects with defects in color vision was found to have a different dependence on the field frequency than that observed for subjects with normal color vision (Lövsund et al., 1980b); and (4) in a patient in whom both eyes had been removed as the result of severe glaucoma, phosphenes could not be induced by time-varying magnetic fields, thereby precluding the possibility that magnetophosphenes can be initiated directly in the visual pathways of the brain (Lövsund et al., 1980b).
Although the available evidence strongly implicates the retina as the site of magnetic field action leading to phosphenes, it is not as yet clear whether the photoreceptors or the neuronal elements of the retina are the sensitive substrates that respond to the field. In a series of experiments on in vitro frog retinal preparations, Lövsund et al. (1981) have made extracellular electrical recordings from the ganglion cell layer of the retina immediately following termination of exposure to a 20-Hz, 60-mT field in the presence or absence of broad-spectrum background light. It was found that the average latency time for response of the ganglion cells to a photic stimulus was increased from 87 to 92 ms (p<0.05) in the presence of the magnetic field. In addition, the ganglion cells that exhibited electrical activity during photic stimulation ("on" cells) ceased their activity during magnetic field stimulation (i.e., they became "off" cells). The converse behavior of ganglion cells was also observed. These observations indicate that stimulation of the retina by light and by a time-varying magnetic field elicits responses in similar post-synaptic neural pathways.

An important electrophysiological finding by Lövsund et al. (1981) was the observation that the electrical response of frog retinal ganglion cells to both photic stimuli and time-varying magnetic fields was blocked when either sodium aspartate or cobalt chloride was added to the Ringer's solution in the eyecup preparation. These compounds inhibit the transfer of information from the photoreceptors to the neuronal elements of the retina. The electrophysiological observations on chemically blocked retinal preparations appear to implicate the photoreceptors per se as the locus of the magnetic field stimulation. The origin of magnetic field responses within the receptors is consistent with the hypothesis of Knighton (1975) that a transretinal electric current may act to polarize the photoreceptor synaptic membrane, and thereby alter the post-
synaptic transmission of electrical information. One experimental observation made by Lövsund et al. (1981) which appears to be inconsistent with this hypothesis was the ability of an applied magnetic field to induce phosphenes in a patient with Retinitis pigmentosa, in whom the photoreceptors and pigment epithelium were defective but the bipolar and ganglion cell layers of the retina were conserved. The disparity in these observations, however, may be attributable to a smaller number of functional photoreceptors within the otherwise degenerated retina of the Retinitis patient. In this context, it is of interest to note that Kato et al. (1983) found that electrophosphenes could be generated in patients with pigmentary retinal dystrophy, but a substantially larger stimulus intensity was required over the entire frequency range of 7 to 80 Hz than with subjects that had normal vision. Lövsund et al. (1981) have also speculated that sensitivity to time-varying magnetic fields may exist within both the photoreceptor and the neuronal elements of the retina, but that the former are stimulated with greater ease.

RESPONSES OF NERVOUS TISSUES AND ANIMAL BEHAVIOR TO ELF MAGNETIC FIELDS

Several studies have been made of the electrical response of neurons to stimulation with time-varying magnetic fields. As discussed by Bernhardt (1979), the current densities induced by the field must exceed 1 to 10 mA/m² in order to have an appreciable effect on nerve bioelectric activity, and a threshold extracellular current density of about 20 mA/m² has been found experimentally with Aplysia pacemaker neurons stimulated by an ELF electric field (Wachtel, 1979). In a subsequent study with Aplysia (Sheppard, 1983), an induced current density of approximately 5 mA/m² produced by a 10-mT, 60-Hz sinusoidal field was ineffective in altering the spontaneous neuronal electrical activity. Ueno et al. (1981) were also unable to alter the
amplitude, conduction velocity, or refractory period of evoked action potentials in lobster giant axons by applying ELF magnetic fields with intensities of 1.2 T at 5 to 20 Hz, 0.8 T at 50 Hz, and 0.5 T at 100 Hz. However, using magnetic flux densities in the range from 0.2 to 0.8 T, Kolin et al. (1959) were able to stimulate frog nerve-muscle preparations at field frequencies of 60 and 1000 Hz. Oberg (1973) and Ueno et al. (1978) were also able to stimulate contractions in frog nerve-muscle preparations by using pulsed magnetic fields with pulse durations less than 1 ms. In addition, the excitation of frog sartorius and cardiac muscles (Irwin et al., 1970) and the sciatic nerves of dogs and rabbits (Maass and Asa, 1970) has been reported to occur in response to pulsed magnetic fields. Based on electromyographic recordings from the human arm, Polson et al. (1982) were able to characterize the pulsed magnetic field parameters that elicited a neural response. From data presented in their report, the threshold value of dB/dt necessary to stimulate the major nerve trunks of the arm is approximately 10^4 T/s.

From these studies, it appears that sinusoidal ELF magnetic fields with intensities in the range generally used in the laboratory or encountered by humans in occupational settings are insufficient to alter the bioelectric properties of isolated neurons. However, direct magnetic stimulation of nerve and muscle tissues can be achieved by using pulsed fields with a large time rate of change of the magnetic flux density. It should also be borne in mind that the effects of ELF sinusoidal fields on complex, integrated neuronal networks such as those within the central nervous system may be considerably greater than the effects that occur in single neurons or nerve bundles. This amplification of a field effect could occur through a summation of the small responses evoked in individual neuronal elements (Valentinuzzi, 1965). An additive response mechanism may also underlie the production of magnetophos-
phenes through the stimulation of multiple neuronal elements of the retina by ELF magnetic fields (Valentinuzzi, 1962).

During the past two decades, a large number of studies on animal behavioral responses to ELF magnetic fields have been reported (Friedman et al., 1967; Caldwell and Russo, 1968; Persinger, 1969; Persinger and Foster, 1970; Grissett, 1971; Grissett and deLorge, 1971; Persinger and Pear, 1972; Ossenkopp and Shapiro, 1972; deLorge, 1972, 1973a, 1973b, 1974, 1979, 1985; Beischer et al., 1973; Gibson and Moroney, 1974; Mantell, 1975; Medvedev et al., 1976; Smith and Justeson, 1977; Andrianova and Smirnova, 1977; Brown and Skow, 1978; Tucker and Schmitt, 1978; Becker, 1979; Clarke and Justeson, 1979; Delgado et al., 1983; Papi et al., 1983; Graham et al., 1984; Creim et al., 1984; Davis et al., 1984). A chronological listing of these reports and a summary of the principal findings are given in Table 2. Several studies in which the behavior of honeybees and birds was observed to be altered in the presence of combined ELF electric and magnetic fields (Greenberg et al., 1981a, 1981b; Southern, 1975; Larkin and Sutherland, 1977) have not been included because of the difficulty in attributing these effects to either the electric or magnetic field component. In the case of bees, it appears that ELF electric fields may induce step-potential currents in the hive that have harmful effects when the field intensity exceeds approximately 2 kV/m (Greenberg et al., 1981b). However, altered behavioral patterns of honeybees have also been reported to occur in 60-Hz magnetic fields in the absence of an external electric field (Caldwell and Russo, 1968). The mechanism underlying the observed disruption of avian migration by the 72 to 80 Hz electric and magnetic fields from an ELF communication test system is not known (Southern, 1975; Larkin and Sutherland, 1977). However, there are numerous reports that weak dc magnetic fields comparable in strength to the earth's field may influence the
migration patterns of birds (Tenforde, 1985b), and very weak oscillating magnetic fields have also been claimed to affect avian orientation (Papi et al., 1983). One possible mechanism of interaction of low-intensity magnetic fields with bees and avians may result from magnetic forces exerted on the deposits of magnetite crystals that have been identified in these species (Gould et al., 1978; Walcott et al., 1979). From a theoretical perspective, it is unlikely that a time-varying ELF field could orient or produce significant motion of the magnetite inclusions, as discussed earlier in this chapter. The time-varying force produced by an ELF field may, however, trigger somatosensory responses. Currently, there is no convincing evidence to suggest that such an interaction occurs, nor that a similar interaction mechanism exists in mammalian species.

In assessing the effects of ELF magnetic fields on the behavior of mammalian species, the 24 publications listed in Table 2 that bear on this subject are nearly equally divided between positive findings and observations of no behavioral effects in mammals. A careful examination of this list, however, leads to the interesting conclusion that in 8 or the 14 investigations in which no behavioral effect was observed, the time rate of change of the applied magnetic field was sufficient to induce peak intracranial current densities at or above the endogenous level of approximately 1 mA/m². In contrast, only one or the 10 positive findings of behavioral alterations in mammals (Andrianova and Smirnova, 1977) involved the use of an ELF magnetic field capable of inducing intracranial currents at this level. In examining the possible reasons for this apparent disparity, it is important to assess the potential influence on animal behavior of extraneous factors such as mechanical vibration and audible noise that may accompany the activation of magnet coils. The importance of these factors has been well demonstrated by Tucker and
Schmitt (1978), who found that perceptive individuals could sense the presence of a 60-Hz magnetic field through auxiliary clues. When these investigators developed an exposure chamber that provided extreme isolation from vibration and audible noise, none of the more than 200 individuals tested could detect 60-Hz fields with intensities of 1.1 mT over the whole body or 2.1 mT over the head region. The sensitivity of behavioral indices to adventitious factors such as changes in barometric pressure has also been discussed by deLorge (1973b), who emphasized that the correlation of such variables to positive findings of apparent ELF field effects must be examined.

Another aspect of ELF magnetic field effects that should be considered in the context of behavioral alterations is the recent report of a correlation between the incidence of suicides and the intensity of residential 50-Hz magnetic fields from power-line sources (Perry et al., 1981). Based on coroner and police records from various urban and rural regions within a 5000-km² area in the Midlands of England, a statistically significant increase in suicide rate was found among individuals who lived in residences where the 50-Hz field intensity exceeded 0.15 μT at the front entrance. A subsequent statistical analysis of the same data indicated that the cumulative probability ratio for the incidence of suicide increased above the null effect level of unity for residential 50-Hz magnetic field intensities exceeding 15 nT (Smith, 1982). However, oscillations occurred in the cumulative probability ratio as a function of increasing magnetic field intensity, and at 0.2 μT the ratio for the "urban" study group was consistent with the absence of any 50-Hz magnetic field effect. From an epidemiological perspective, the lack of a clear-cut dependence of the suicide incidence on magnetic field intensity suggests that the apparent correlation between these variables may be purely fortuitous. An extension of the studies initiated by Perry et al. (1981) using a significantly
larger population of individuals will be required before any firm judgment can be made regarding the proposed correlation between suicide incidence and ELF magnetic field exposure.

ELF MAGNETIC FIELD EFFECTS ON CELLULAR, TISSUE AND ANIMAL SYSTEMS

A large number of literature reports have appeared during the last two decades describing effects of ELF magnetic fields on a wide variety of cellular and organized tissue systems. These reports have been listed in chronological order in Table 3, and a brief summary is given of the principal research findings in each study. The following types of investigations have not been included in Table 3 for the reasons stated below: (1) Studies of ELF magnetic field effects on the visual system (magnetophosphene induction), nervous tissues and animal behavior, and carcinogenic risk have been excluded because these subjects are discussed elsewhere in this chapter. (2) Reports lacking adequate documentation of field exposure conditions (e.g., frequency, waveform, intensity, and duration of exposure) have been excluded. Similarly, studies have not been included in which the biological measurements were qualitative rather than quantitative, as in certain medical reports on bone fracture reunion following therapy with pulsed magnetic fields. (3) Reports of research that involved combined exposures to ELF electric and magnetic fields have not been included because of the obvious difficulty in delineating the relative effects of the two types of fields. An example of such studies is the investigation conducted at the Naval Aerospace Medical Research Laboratory on the development and physiology of rhesus monkeys chronically exposed to 72- to 80-Hz electric and magnetic fields that were designed to simulate the field parameters of a proposed naval ELF submarine communication system (Grissett, 1980). In two separate experiments, an increased rate of growth was observed
in the exposed group of juvenile male monkeys, which has been hypothesized to result from an increased production of testosterone in response to direct electrical stimulation of the testicles through contact with the energized cage bars. This possible explanation for the accelerated growth phenomenon was tested by measurements of serum testosterone, but the results were inconclusive (Lotz and Saxton, 1984).

Despite the large number of test specimens that have been examined for sensitivity to ELF magnetic fields, it is difficult at present to draw firm conclusions concerning the biological effects of these fields at the cellular and tissue levels as a result of several factors: (1) A wide range of intensities, frequencies, waveforms, and exposure durations have been used. Many of the earlier studies utilized sinusoidal fields oscillating at 15 to 80 Hz, but research during the last few years has focused increasingly on the biological effects of square-wave or pulsed fields with complex waveforms. Among the studies conducted with purely sinusoidal fields, the field intensities have ranged from approximately 1 μT to 1 T, and the exposure durations have varied from 10 min to 1 - 4 weeks of either continuous or intermittent exposures. (2) Although the vast majority of the published literature describes positive bioeffects of ELF magnetic fields, none of the findings listed in Table 3 have been verified by means of independent replication in other laboratories. (3) A number of apparent inconsistencies can be found in the comparison of data acquired on similar (but not identical) test specimens. For example, exposure to a low-intensity ELF magnetic field was reported to produce an elevation in the serum triglyceride levels of human subjects (Beischer et al., 1973), but comparable effects were not observed in monkeys (deLorge, 1974).

Regardless of the inadequacies that exist in the available database, the
existing literature reports summarized in Table 3 indicate that several aspects of the biochemistry and physiology of cells and organized tissues may be perturbed by exposure to ELF magnetic fields. The reported biological effects for which there is a growing body of evidence include:

- altered cell growth rate (Batkin and Tabrah, 1977; Tabrah et al., 1978; Goodman et al., 1979; Greenebaum et al., 1979, 1982; Aarhold et al., 1981; Ramon et al., 1981; Winters and Phillips, 1984a, 1984b);
- decreased rate of cellular respiration (Goodman et al., 1979; Greenebaum et al., 1979, 1982; Kolodub and Chernysheva, 1980);
- altered metabolism of carbohydrates, proteins, and nucleic acids (Udintsev et al., 1976; Kartaskev et al., 1978; Udintsev and Khlynin, 1979; Kolodub and Chernysheva, 1980; Koledub et al., 1981; Norton, 1982; Goodman et al., 1983; Archer and Ratcliffe, 1983; Liboff et al., 1984);
- endocrine alterations and altered hormonal responses of cells and tissues (Riesen et al., 1971; Udintsev and Moroz, 1976; Sakharova et al., 1977, 1981; Kolesova et al., 1978; Udintsev et al., 1978; Lubin et al., 1982; Jolley et al., 1983; Cain et al., 1984);
- altered immune response to antigens and mitogens (Odintsov, 1965; Mizushima et al., 1975; Conti et al., 1983);
- morphological and other nonspecific tissue changes in adult animals, frequently reversible with time after exposure (Druz, 1966; Toroptsev et al., 1974; Toroptsev and Soldatova, 1981; Sakharova et al., 1981; Soldatova, 1982; Shober et al., 1982);
- teratologic and development effects (Krueger et al., 1972; Ossenkopp et al., 1972; Delgado et al., 1981, 1982; Ramirez et al., 1983; Ubeda et al., 1983).
In view of the generally positive findings of effects on many tissue and organ systems, it is interesting to note that, with the exception of one isolated report (Tarakhovsky et al., 1971), all of the published studies on hematological parameters in exposed animals have shown no consistent field-associated effects (Beischer et al., 1973; deLorge, 1974; Mantell, 1975; Fam, 1981; Sander et al., 1982). The apparent lack of sensitivity of the hematological system to ELF magnetic fields is in distinct contrast to the well-documented effects of ionizing radiation and high-intensity microwave fields on this particular physiological system.

Eighteen of the investigations with ELF sinusoidal fields have involved the exposure of rodents to 50- and 60-Hz fields with intensities ranging from 0.01 to 0.8 T (Odintsov, 1965; Druz et al., 1966; Tarakhovsky et al., 1971; Toroptsev et al., 1974; Udintsev and Moroz, 1974; Mizushima et al., 1975; Udintsev et al., 1976; Sakharova et al., 1977, 1981; Kolesova et al., 1978; Udintsev et al., 1978; Udintsev and Khlynin, 1979; Chandra and Stefani, 1979; Kolodub and Chernysheva, 1980; Fam, 1981; Toroptsev and Soldatova, 1981; Kolodub et al., 1981; Soldatova, 1982). With the exception of one report in which tumor growth rate was observed not to be influenced by brief exposure to a 60-Hz, 0.16-T field (Chandra and Stefani, 1979), all of these studies report positive findings of cellular and tissue effects from ELF magnetic fields. The maximum current densities induced in the experimental subjects by the applied field exceeded approximately 10 mA/m^2 in these studies, and were therefore at or above the upper limit of the endogenous currents that are normally present within the body (Bernhardt, 1979). It is also notable that positive findings of biological effects were obtained in all of the 11 studies listed in Table 3 in which square waveforms and pulsed fields with repetition frequencies in the ELF range were used (Delgado et al., 1981, 1982; Lubin et al., 1982; Norton,
During the rising portions of the various square-wave and bidirectional pulsed fields that have been used experimentally, a high time rate of change of the magnetic flux density is present and current densities exceeding 10 mA/m² are induced in the exposed tissues. These various laboratory studies thus suggest that the induction by ELF fields of electric currents in tissues and extracellular fluids that exceed the normal physiological levels may lead to perturbations of cellular and tissue functions. It has been suggested that the currents induced by such fields may exert an electrochemical effect at the cell surface that, in turn, influences the membrane transport and intracellular concentration of calcium ions (Lubin et al., 1982; Jolley et al., 1983). Because of the important role played by calcium ions in metabolism and growth regulation, this proposal should be given careful consideration in the context of ELF magnetic field effects at the cellular and tissue levels.

Three of the studies listed in Table 3 involved short-term exposures of human subjects to ELF magnetic fields (Beischer et al., 1973; Mantell, 1975; Sander et al., 1982). With the exception of one unconfirmed report of an elevation in serum triglycerides in the exposed subjects (Beischer et al., 1973), none of these investigations revealed adverse effects of ELF magnetic fields with intensities comparable to or exceeding the levels generally encountered by man. Particularly notable in this regard is the report by Sander et al. (1982), who observed that a 4-h exposure of human subjects to a 50-Hz, 5-mT field produced no changes in serum chemistry, blood cell counts, blood gases and lactate concentration, electrocardiogram, pulse rate, skin temperature, hormones (cortisol, insulin, gastrin, thyroxine), and various neuronal measurements including visually evoked potentials recorded in the
During the last five years, several investigations have been carried out to assess whether correlations exist between exposure to ELF electric and/or magnetic fields and the incidence of reproductive alterations and carcinogenesis (Nordström et al., 1983; Wertheimer and Leeper, 1979, 1980, 1982, 1984; Fulton et al., 1980; Wiklund et al., 1981; Milham, 1982; Tomenius et al., 1982; Wright et al., 1982; Coleman et al., 1983; McDowall, 1983; Vägerö and Olin, 1983). These studies are discussed in detail in the chapters by D.A. Savitz (Vol. 1) and S.M. Michaelson (Vol. 2). Because of the large number of investigators who claim to have found an apparent association between cancer risk and residential or occupational exposure to power-frequency magnetic fields, a brief discussion and critique of these specific studies are also given here.

Ten reports on this subject published since 1979 are summarized in Table 4. The initial publication by Wertheimer and Leeper (1979) reported an apparent correlation between the incidence of leukemia in children living in the Denver, Colorado area and exposure to power-frequency magnetic fields from high-current primary and secondary wiring configurations in the vicinity of their residences. A later epidemiological survey by Tomenius et al. (1982) of childhood leukemia incidence in the County of Stockholm produced results that were consistent with the Wertheimer and Leeper (1979) study.

In a study conducted in Rhode Island, Fulton et al. (1980) concluded that there was no statistically significant correlation between the incidence of childhood leukemia and residential exposure to magnetic fields from power lines. Wertheimer and Leeper (1980) were critical of the study by Fulton et al. (1980) on the basis that the control and case groups had not been matched.
for interstate migration, for years of occupancy of residences, or for the ages of the children at the time their residential addresses were determined from birth records and hospital medical records. In a subsequent analysis of the data obtained by Fulton et al. (1980), Wertheimer and Leeper (1980) excluded cases and controls aged eight and above in order to define a complete residential history for the remaining subjects (53 cases and 71 controls). In this subset of the total population studied by Fulton and his associates, Wertheimer and Leeper found a weakly significant correlation ($p \approx 0.05$) between the incidence of leukemia and residential high-current power line configurations.

A total of four brief epidemiological reports were published during 1982 and 1983 in the format of letters to journal editors (Milham, 1982; Wright et al., 1982; McDowall, 1983; Coleman et al., 1983), all of which showed an apparent association between the incidence of leukemia in males and occupational exposure to ELF electric and magnetic fields. Two of these studies were conducted in the United States (Milham, 1982; Wright et al., 1982) and two in England (McDowall, 1983; Coleman et al., 1983). In a study using the Swedish Cancer-Environment Registry as an epidemiological data base, a slightly higher total incidence of cancer was reported among male and female workers in the electrical manufacturing industry as compared to the general population (Vågerö and Olin, 1983). In an epidemiological study of telecommunications workers that was also based on the Swedish Cancer-Environment Registry, Wiklund et al. (1981) found no increased risk for this occupational group as compared to the Swedish population as a whole.

Overall, 8 of the 10 recent epidemiological studies discussed above have reported an apparent association between cancer incidence and residential or occupational exposure to ELF fields from electric power sources. However,
there were a number of methodological deficiencies in these studies that limit the soundness of their conclusions. Several specific problems are the following: (1) In all of the studies thus far reported, the magnetic field dosimetry was at best qualitative. In studies of residential ELF magnetic fields, the neglect of local fields from appliances may have led to incorrect conclusions concerning the peak and average exposure of individuals to power-frequency fields and the harmonic frequencies that emanate from electrical devices used within the home. (2) The sample populations in many of the epidemiological studies were small, and the reported increases in cancer incidence by a factor of 2 or less might be expected to occur on the basis of chance alone. In these studies, it would have been informative if the authors had presented data on several nonexposed occupational groups in which the sample size was comparable to that of the exposed groups. (3) Control groups were frequently chosen in a nonblind manner involving subjective criteria, and the control population was often not matched with the exposed group on the basis of age, sex, race, socioeconomic class, or urban/rural residential status. (4) Several of the studies used weak statistical methods such as the calculation of proportionate mortality ratios, which can lead to extremely misleading conclusions for population subgroups in which the overall incidence of disease is low with the exception of one disease class such as cancer (or some specific form of cancer such as leukemia). (5) The existence of confounding factors such as smoking habits and exposure to industrial pollutants of known carcinogenic potential (e.g., aryl hydrocarbons) were ignored in all of the epidemiological studies that have attempted to relate ELF fields and cancer incidence.

In view of the numerous deficiencies in the epidemiological studies conducted to date, it is currently not possible to conclude that a definite
association exists between the exposure of individuals to ELF magnetic (or electric) fields and their relative risk of contracting leukemia or other forms of cancer. In addition, the field levels to which humans are generally exposed are sufficiently low that it is difficult to conceive plausible mechanisms that might underlie a causal relationship between cancer incidence and ELF magnetic field exposure. To put this issue into clearer perspective, it is instructive to consider the internal potentials and currents induced in humans as the result of motion through the earth's magnetic field. A straightforward calculation based on Faraday's law indicates that the motion of a human bending forward at the waist within the geomagnetic field will induce instantaneous internal currents comparable to those produced by exposure to an external 60-Hz sinusoidal field with an intensity of approximately 0.1 to 0.2 μT. This magnetic field intensity is comparable to the ambient power-frequency fields in many residences and occupational settings. Such considerations indicate clearly the need for careful dosimetry in any attempt to detect a relationship between power-frequency magnetic fields and cancer. The conduct of prospective epidemiological studies with carefully matched control groups would also be of great value in assessing the validity of conclusions drawn from many of the retrospective studies that have been carried out during the past few years.

SUMMARY

Although a wide variety of biological effects resulting from exposure to ELF magnetic fields have been reported in studies on cellular, tissue, and animal systems, the only phenomenon consistently replicated is the induction of magnetophosphenes. The minimum field intensity required to induce magnetophosphenes using a sinusoidal time-varying field is 10 mT, and this level is significantly greater than the ELF magnetic field intensities to which humans
are routinely exposed. It is also notable that many of the other reported bioeffects of ELF magnetic fields in cells, tissues, and animals were observed with field intensities and waveforms that induced circulating currents above the naturally occurring levels in biological objects.

A large number of investigations have been carried out during the past two decades to assess the biological effects of ELF magnetic fields with intensities comparable to, or in some cases lower than, those to which humans are routinely exposed. These studies have led to both positive and negative findings of ELF magnetic field effects, and there is little consistency among reports from different laboratories. An example of the difficulty in interpreting these studies is provided by the many reports on animal behavior in ELF magnetic fields. A majority of the investigations carried out with low field intensities have indicated the occurrence of behavioral alterations, whereas nearly all of the studies conducted with higher field intensities have provided no evidence for field-associated effects on animal behavior.

Currently, many of the reported effects of very low intensity ELF magnetic fields on cellular, tissue, and animal systems must be viewed with caution, either because of a lack of independent verification of the experimental findings, or because the reported field effects may have resulted from the presence of confounding variables. This type of consideration also pertains to the recent epidemiological reports of an apparent correlation between cancer incidence and residential or occupational exposure to ELF magnetic fields. Numerous deficiencies have been noted in the dosimetric and epidemiological procedures that were used in these studies, and no definitive conclusions concerning the possible relationship between ELF magnetic field exposure and cancer risk can be drawn from the evidence that is currently available.

Several recent publications on ELF magnetic field interactions with living
systems have indicated that the biological response may depend in a very sensitive manner on the waveform and frequency of the applied field. For example, studies using pulsed magnetic fields with fast rise times have led, in nearly all instances, to findings of perturbations in biological functions. Several recent reports of research using various waveforms have also indicated that the frequency of the applied field may be critically important for eliciting a biological response, and that "windows" of sensitivity may exist within the ELF frequency range. A number of theoretical models have been proposed to explain these observations, although none of these models has as yet been subjected to direct experimental verification. It is evident that future research efforts with ELF magnetic fields must focus to an increasing extent on mechanistic studies, with particular emphasis being placed on elucidating the underlying basis for the reported sensitivity of biological systems to fields with specific waveforms and frequency characteristics.

CONCLUSIONS

The basic goal of this chapter has been to summarize and to analyze in a critical manner the extensive literature that exists on the responses of animal, tissue, and cellular systems to ELF magnetic fields. The underlying motivation for preparing this review was the present need for an assessment of the potential influence on biological systems of the low-intensity fields associated with the proposed Naval ELF Submarine Communication System. In this section, the conclusions of the preceding literature review will be related in a concise manner to the ELF Communication System.

The characteristics of the magnetic fields produced by the proposed ELF Communication System are described in detail in the Appendix to this report. The predicted field intensity within the ELF antenna right-or-way is
anticipated to be 6 μT, although levels up to 14 μT could occur near line sags or in areas with a high ground topography relative to the overhead line. At avian migrational altitudes above the antenna lines the field intensities are projected to be less than 1 μT, and even lower intensities will be present at ground level in areas outside of the antenna right-of-way. Based on recent measurements near the Wisconsin and Michigan test sites, the ELF antenna fields in the frequency band from 72 to 80 Hz appear to be comparable in magnitude to the 60-Hz ambient fields emanating from electrical wiring, appliances and equipment. The frequency spectrum of the ELF Communication System has been measured at the Wisconsin test facility, and the signal strength in the subharmonic frequency range was lower by 40-60 dB than the signal level at the center frequency (76 Hz). Similarly, the higher harmonic frequency spectrum exhibited levels that were down by 50-60 dB relative to the center frequency signal.

In the context of analyzing the potential biological effects of the extremely low-intensity magnetic fields produced by the ELF Communication System, two general conclusions can be made on the basis of the literature review provided in this chapter:

- Although numerous behavioral, physiological and biochemical effects of ELF magnetic fields have been reported on the basis of laboratory studies, very few of these experiments were carried out using low field intensities comparable to those associated with the ELF Communication System. The reports which indicate that measurable perturbations of biological processes occur as a consequence of exposure to extremely low intensity fields must currently be viewed with caution until the results have been established by independent replication in other laboratories.
Recent epidemiological studies suggest that a correlation may exist between cancer incidence and exposure to the power-frequency magnetic fields present in residential and industrial environments. These studies are clearly relevant to the issue of potential biological effects from the magnetic fields that will be present in areas within the proximity of the right-of-way of the ELF Communication System. However, as discussed in this report, the methodological and dosimetric deficiencies of the published epidemiological studies are numerous, and the available evidence that a correlation exists between cancer incidence and ELF magnetic field exposure cannot be regarded as conclusive. A critical need exists for carefully designed epidemiological and laboratory studies to clarify this issue.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Principal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>d'Arsonval, 1896</td>
<td>Initial report of magnetophosphenes produced by a 42-Hz field</td>
</tr>
<tr>
<td>Thompson, 1909</td>
<td>Described magnetophosphenes produced by a 50-Hz field as a colorless, flickering illumination that is most intense in the peripheral region of the eye</td>
</tr>
<tr>
<td>Dunlap, 1911</td>
<td>Demonstrated that magnetophosphenes produced by a 25-Hz field are more intense than those produced by a 60-Hz field of comparable intensity</td>
</tr>
<tr>
<td>Magnusson and Stevens, 1911</td>
<td>Demonstrated the production of magnetophosphenes by pulsed dc fields as well as by time-varying fields with frequencies from 7 to 66 Hz; observed strongest magnetophosphenes with fields oscillating at 20 to 30 Hz</td>
</tr>
<tr>
<td>Barlow et al., 1947</td>
<td>Demonstrated threshold field intensity of 20 mT (r.m.s.) at 30 Hz, and showed that the threshold for magnetophosphenes is relatively insensitive to background illumination as compared to electrophosphenes; characterized "fatigue" phenomenon with a 60-Hz magnetic field applied for 1 min, which was followed by a refractory period of 40 s during which a second phosphene could not be elicited; demonstrated that magnetic fields must be applied in the region of the eye to produce phosphenes, and that sensitivity is abolished by pressure applied to the eyeball</td>
</tr>
<tr>
<td>Seidel, 1968</td>
<td>Observed comparable light patterns associated with visual stimulation by ELF electric and magnetic fields, but found different probabilities of occurrence of certain types of phosphene patterns</td>
</tr>
<tr>
<td>Lövsund et al., 1979-1981</td>
<td>Analyzed threshold field intensity for production of magnetophosphenes over frequency range of 10 to 45 Hz; demonstrated maximum sensitivity to a 20-Hz field; studied effects of dark adaptation, background illumination, and visual defects on sensitivity to magnetophosphenes; compared threshold stimuli required to produce electrophosphenes and magnetophosphenes; characterized changes in electrophysiological responses of isolated frog retinas exposed to ELF magnetic fields</td>
</tr>
<tr>
<td>Budinger et al., 1984</td>
<td>Found minimum time rate of change of pulsed magnetic field to be 1.3 to 1.9 T/s to produce magnetophosphenes</td>
</tr>
</tbody>
</table>
Table 2. Behavioral Effects of Exposure to Time-Varying ELF Magnetic Fields

<table>
<thead>
<tr>
<th>Reference</th>
<th>Subject</th>
<th>Exposure Conditions*</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friedman et al., 1967</td>
<td>Human</td>
<td>0.1 and 0.2 Hz, 0.5 to 1.1 mT; acute exposures</td>
<td>Increased reaction time in 0.2-Hz field</td>
</tr>
<tr>
<td>Caldwell and Russo, 1968</td>
<td>Honeybee</td>
<td>60 Hz, 2.2 to 30 mT; 10-min exposures</td>
<td>Altered exploratory behavior</td>
</tr>
<tr>
<td>Persinger, 1969</td>
<td>Rat</td>
<td>0.5 Hz, 0.3 to 3.0 mT, rotating field; exposure during entire gestational period</td>
<td>Decreased open-field activity and increased defecation when tested postnatally at 21 to 25 days</td>
</tr>
<tr>
<td>Persinger and Foster, 1970</td>
<td>Rat</td>
<td>0.5 Hz, 0.3 to 3.0 mT, rotating field; exposure during entire gestational period</td>
<td>Decreased avoidance of aversive electrical shock when tested postnatally at 30 days</td>
</tr>
<tr>
<td>Grissett and deLorge, 1971</td>
<td>Monkey</td>
<td>45 and 75 Hz, 0.3 mT; fields applied in 10 daily sessions of 1 h duration</td>
<td>No effect on reaction time</td>
</tr>
<tr>
<td>Grissett, 1971</td>
<td>Monkey</td>
<td>45 Hz, 1.0 mT; continuous exposure for 42 days</td>
<td>No effect on reaction time</td>
</tr>
<tr>
<td>Persinger and Pear, 1972</td>
<td>Rat</td>
<td>0.5 Hz, 0.3 to 3.0 mT, rotating field; exposure during entire gestational period</td>
<td>Suppressed rate of response to a conditioned stimulus preceding an aversive shock when tested postnatally at 70 days</td>
</tr>
<tr>
<td>Persinger et al., 1972</td>
<td>Rat</td>
<td>0.5 Hz, 0.3 to 3.0 mT, rotating field; exposure of adult animals for 21 to 30 days</td>
<td>Increased ambulatory activity after removal from field</td>
</tr>
</tbody>
</table>

* The magnetic fields were sinusoidal unless otherwise indicated.
Table 2. Behavioral Effects of Exposure to Time-Varying ELF Magnetic Fields (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Subject</th>
<th>Exposure Conditions*</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ossenkopp and Shapiro, 1972</td>
<td>Duck eggs</td>
<td>0.5 Hz, 2 to 10 and 10 to 30 mT, rotating field; exposure for entire prenatal period</td>
<td>Increased ambulation and defecation rate when tested postnatally</td>
</tr>
<tr>
<td>DeLorge, 1972, 1973, 1974, 1979,</td>
<td>Monkey</td>
<td>10, 15, 45, 60 and 75 Hz, 0.8 to 1.0 mT; fields applied in 4 to 13 daily sessions of</td>
<td>No consistent influence on motor activity, reaction time, inter-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 to 8 h duration</td>
<td>response time, overall lever responding, or match-to-sample performance</td>
</tr>
<tr>
<td>Beischer et al., 1973</td>
<td>Human</td>
<td>45 Hz, 0.1 mT; 22.5-h exposure</td>
<td>No effect on reaction time</td>
</tr>
<tr>
<td>Gibson and Moroney, 1974</td>
<td>Human</td>
<td>45 Hz, 0.1 mT; 24-h exposure</td>
<td>No consistent effect on cognitive or psychomotor functions</td>
</tr>
<tr>
<td>Mantell, 1975</td>
<td>Human</td>
<td>50 Hz, 0.3 mT; 3-h exposure</td>
<td>No effect on reaction time</td>
</tr>
<tr>
<td>Medvedev et al., 1976</td>
<td>Human</td>
<td>50 Hz, 10 to 13 μT; acute exposures</td>
<td>Increased latency of sensorimotor reactions</td>
</tr>
<tr>
<td>Smith and Justeson, 1977</td>
<td>Mouse</td>
<td>60 Hz, 1.4 to 2.0 mT; 2-min aperiodic exposures over 2 days</td>
<td>Increased locomotor activity and aggression-related vocalization</td>
</tr>
<tr>
<td>Andrianova and Smirnova, 1977</td>
<td>Mouse</td>
<td>100 Hz, 10 mT; acute exposures</td>
<td>Heightened motor activity</td>
</tr>
<tr>
<td>Brown and Scow, 1978</td>
<td>Hamster</td>
<td>10^{-5} Hz, 0.8-26 μT; 26-h schedule of high (14 h) to low (12 h) field switching</td>
<td>Modified circadian rhythm in locomotor activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>over period of 4-5 months</td>
<td></td>
</tr>
</tbody>
</table>

* The magnetic fields were sinusoidal unless otherwise indicated.
Table 2. Behavioral Effects of Exposure to Time-Varying ELF Magnetic Fields (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Subject</th>
<th>Exposure Conditions*</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tucker and Schmitt, 1978</td>
<td>Human</td>
<td>60 Hz, 1.06 mT over whole body, or 2.12 mT over head region; repetitive acute exposures</td>
<td>No perception of field</td>
</tr>
<tr>
<td>Becker, 1979</td>
<td>Termites</td>
<td>50 Hz, 0.05 μT in shielded room; exposures up to several weeks</td>
<td>Stimulation of gallery building activity</td>
</tr>
<tr>
<td>Clark and Justesen, 1979</td>
<td>Chicken</td>
<td>60 Hz, 2.4 mT; aperiodic exposures during 1-h interval for 10 days</td>
<td>Increased variability of response to electric shock stimulus when 60-Hz magnetic field used as conditional stimulus</td>
</tr>
<tr>
<td>Delgado et al., 1983</td>
<td>Monkey</td>
<td>9 to 500 Hz, 0.1 mT (applied to cerebellum); 9-h daily exposures for maximum of 19 days</td>
<td>Modification of threshold for excitation of motor neurons</td>
</tr>
<tr>
<td>Papi et al., 1983</td>
<td>Pigeon</td>
<td>0.034, 0.043 and 0.067 Hz, 60 μT peak intensity; exposures up to 4 h</td>
<td>Initial disturbance of orientation, but no effect on homing performance</td>
</tr>
<tr>
<td>Graham et al., 1983</td>
<td>Human</td>
<td>60 Hz, 40 μT; acute exposures</td>
<td>No perception of field</td>
</tr>
<tr>
<td>Creim et al., 1984</td>
<td>Rat</td>
<td>60 Hz, 3.03 mT; 1-h exposure</td>
<td>No field-associated avoidance behavior</td>
</tr>
<tr>
<td>Davis et al., 1984</td>
<td>Mouse</td>
<td>60 Hz, 2.33 mT; 3-day continuous exposure</td>
<td>No change in memory retention, locomotor activity, or sensitivity to a neuropharmacologic agent</td>
</tr>
</tbody>
</table>

* The magnetic fields were sinusoidal unless otherwise indicated.
Table 3. Effects of Exposure to ELF Magnetic Fields at the Cellular, Tissue, and Animal Levels

<table>
<thead>
<tr>
<th>Reference</th>
<th>Test Specimen</th>
<th>Exposure Conditions*</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odintsov, 1965</td>
<td>Mouse</td>
<td>50 Hz, 20 mT; 6.5-h single exposure or 6.5-h daily for 15 days</td>
<td>Increased resistance to Listeria infection</td>
</tr>
<tr>
<td>Druz and Madiyevskii, 1966</td>
<td>Rat</td>
<td>3 Hz, 0.1 to 0.8 T, and 50 Hz, 0.05 to 0.2 T; 1-min exposures</td>
<td>Change in hydration capacity of brain, kidney, and liver tissues</td>
</tr>
<tr>
<td>Riesen et al., 1971</td>
<td>Guinea pig brain mitochondria in vitro</td>
<td>60 Hz, 10 mT; 10- to 110-min exposures</td>
<td>No effect on respiration (oxidative phosphorylation)</td>
</tr>
<tr>
<td>Riesen et al., 1971</td>
<td>Rat brain synaptosomes in vitro</td>
<td>60 Hz, 5 to 10 mT; 30-min exposure</td>
<td>Decreased uptake of norepinephrine at 0°C, but not at 10°C, 25°C, or 37°C</td>
</tr>
<tr>
<td>Tarakhovsky et al., 1971</td>
<td>Rat</td>
<td>50 Hz, 13 to 14 mT; exposure for 1 month</td>
<td>Changes in serum chemistry, hematocrit, and tissue morphology</td>
</tr>
<tr>
<td>Krueger et al., 1972</td>
<td>Chicken</td>
<td>45 Hz, 0.14 mT, and 60 Hz, 0.12 mT; exposure for 1 month</td>
<td>Reduced growth rate in young animals</td>
</tr>
<tr>
<td>Ossenkopp et al., 1972</td>
<td>Rat</td>
<td>0.5 Hz, 0.05 to 0.30 or 0.3 to 1.5 mT, rotating field; exposure during entire gestational period</td>
<td>Increased thyroid and testicle weights at 105 to 130 days of age; no change in thymus or adrenal weights relative to controls</td>
</tr>
<tr>
<td>Beischer et al., 1973</td>
<td>Human</td>
<td>45 Hz, 0.1 mT; 22.5-h exposure</td>
<td>Elevated serum triglycerides; no effects on blood cell counts or serum chemistry</td>
</tr>
<tr>
<td>DeLorge, 1973</td>
<td>Monkey</td>
<td>15 and 45 Hz, 0.82 to 0.93 mT; fields applied in 5 to 8 daily sessions of 2-h duration</td>
<td>No alteration in blood cell counts or serum chemistry (including triglycerides)</td>
</tr>
</tbody>
</table>

* The magnetic fields were sinusoidal unless otherwise indicated.
Table 3. Effects of Exposure to ELF Magnetic Fields at the Cellular, Tissue, and Animal Levels (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Test Specimen</th>
<th>Exposure Conditions*</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toroptsev et al., 1974</td>
<td>Guinea pig</td>
<td>50 Hz, 20 mT; 6.5-h single exposure or 6.5-h daily for 24 days</td>
<td>Pathomorphological changes in testes, kidneys, liver, lungs, nervous tissues, eyes, capillaries, and lymphatic system</td>
</tr>
<tr>
<td>Udintsev and Moroz, 1974</td>
<td>Rat</td>
<td>50 Hz, 20 mT; 1 to 7 days exposure</td>
<td>Increase in adrenal 11-hydroxy corticosteroids</td>
</tr>
<tr>
<td>Mizushima et al., 1974</td>
<td>Rat</td>
<td>50 Hz, 0.12 T; 3-h exposure</td>
<td>Anti-inflammatory effects of field on carrageenan-induced edema and adjuvant-induced arthritis</td>
</tr>
<tr>
<td>Beischer and Brehl, 1975</td>
<td>Mouse</td>
<td>45 Hz, 0.1 mT; 24-h exposure</td>
<td>No change in liver triglycerides</td>
</tr>
<tr>
<td>Mantell, 1975</td>
<td>Human</td>
<td>50 Hz, 0.3 mT; 3-h exposure</td>
<td>No hematological changes</td>
</tr>
<tr>
<td>Udintsev et al., 1976</td>
<td>Rat</td>
<td>50 Hz, 20 mT; 1-day exposure</td>
<td>Increased lactate dehydrogenase activity and change in distribution in heart and skeletal muscles</td>
</tr>
<tr>
<td>Batkin and Tabrah, 1977</td>
<td>Mouse</td>
<td>60 Hz, 1.2 mT; 13-day exposure</td>
<td>Decreased tumor growth rate</td>
</tr>
<tr>
<td>Sakharova et al., 1977</td>
<td>Rat</td>
<td>50 Hz, 20 mT; 1-day exposure</td>
<td>Increased catecholamines in tissue</td>
</tr>
<tr>
<td>Kartaskev et al., 1978</td>
<td>Yeast</td>
<td>0.1 to 100 Hz, 0.025 to 0.40 mT; 20- to 30-min exposure</td>
<td>Changes in rate of anaerobic glycolysis</td>
</tr>
</tbody>
</table>

* The magnetic fields were sinusoidal unless otherwise indicated.
Table 3. Effects of Exposure to ELF Magnetic Fields at the Cellular, Tissue, and Animal Levels (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Test Specimen</th>
<th>Exposure Conditions*</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolesova et al., 1978</td>
<td>Rat</td>
<td>50 Hz, 20 mT; single 24-h exposure and 6.5-h daily for 5 days</td>
<td>Development of insulin deficiency</td>
</tr>
<tr>
<td>Tabrah et al., 1978</td>
<td>Tetrahymena pyriformis</td>
<td>60 Hz, 5 to 10 mT; exposures up to 72 h</td>
<td>Cell division delay, reduced growth rate, increased oxygen uptake</td>
</tr>
<tr>
<td>Persinger et al., 1978</td>
<td>Rat</td>
<td>0.5 Hz, 0.1 μT to 1.0 mT, rotating field; 10-day exposure</td>
<td>No significant changes in thyroid follicle numbers, mast cells, adrenal and pituitary weights, body weight, or water consumption</td>
</tr>
<tr>
<td>Persinger and Coderre, 1978</td>
<td>Rat</td>
<td>0.5 Hz, 0.01 μT to 1.0 mT, rotating field; 5-day exposure</td>
<td>No significant change in thymus mast cell numbers in animals exposed prenatally and postnatally or exposed as adults</td>
</tr>
<tr>
<td>Udintsev et al., 1978</td>
<td>Rat</td>
<td>50 Hz, 20 mT; 0.25-, 6.5- and 24-h exposures</td>
<td>Changes in iodine uptake by the thyroid and thyroxine uptake by tissues</td>
</tr>
<tr>
<td>Udintsev and Khlynin, 1979</td>
<td>Rat</td>
<td>50 Hz, 20 mT; 1-day exposure</td>
<td>Metabolic changes in testicle tissue</td>
</tr>
<tr>
<td>Kronenberg and Tenforde, 1979</td>
<td>Cultured mouse tumor cells</td>
<td>60 Hz, 2.33 mT; 4-day exposure</td>
<td>No effect on cell growth rate</td>
</tr>
<tr>
<td>Chandra and Stefani, 1979</td>
<td>Mouse mammary carcinoma</td>
<td>60 Hz, 0.16 T; 1-h daily exposures for 1 to 4 days</td>
<td>No effect on tumor growth rate</td>
</tr>
</tbody>
</table>

* The magnetic fields were sinusoidal unless otherwise indicated.
Table 3. Effects of Exposure to ELF Magnetic Fields at the Cellular, Tissue, and Animal Levels (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Test Specimen</th>
<th>Exposure Conditions*</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodman et al., 1979; Greenebaum et al., 1979, 1982</td>
<td>Slime mold</td>
<td>75 Hz, 0.2 mT; 400-day exposure</td>
<td>Lengthened nuclear division cycle and altered respiration rate (decreased O₂ uptake)</td>
</tr>
<tr>
<td>Kolodub and Chernysheva, 1980</td>
<td>Rat</td>
<td>50 Hz, 9.4, and 40 mT; 5 h daily for 15 days</td>
<td>Altered brain metabolism at higher field intensity, including decreased rate of respiration, decreased levels of glycogen, creatine phosphate and glutamine, and increased DNA content</td>
</tr>
<tr>
<td>Fam, 1981</td>
<td>Mouse</td>
<td>60 Hz, 0.11 T; 23 h daily for 7 days</td>
<td>Decreased body weight and increased water consumption; hematology, organ histology, and reproduction not affected</td>
</tr>
<tr>
<td>Aarholt et al., 1981</td>
<td>Bacteria</td>
<td>16.66 and 50 Hz, 0 to 2.0 mT; 10- to 12-h exposure</td>
<td>Decreased growth rate</td>
</tr>
<tr>
<td>Ramon et al., 1981</td>
<td>Bacteria</td>
<td>60 and 600 Hz, 2 mT; 17- to 64-h exposure</td>
<td>Decreased growth rate and cytolysis</td>
</tr>
<tr>
<td>Toroptsev and Soldatova, 1981</td>
<td>Rat</td>
<td>50 Hz, 20 mT; 1- to 24-h exposures</td>
<td>Pathomorphological changes in brain</td>
</tr>
<tr>
<td>Koleedub et al., 1981</td>
<td>Rat</td>
<td>50 Hz, 9.4 to 40 mT, daily 3-h exposures for up to 6 months</td>
<td>Changes in carbohydrate metabolism in the myocardium</td>
</tr>
<tr>
<td>Sakharova et al., 1981</td>
<td>Rat</td>
<td>50 Hz, 20 mT, 1-day exposure</td>
<td>Changes in catecholamine content and morphology in brain, heart, liver, spleen, and circulatory system</td>
</tr>
</tbody>
</table>

* The magnetic fields were sinusoidal unless otherwise indicated.
Table 3. Effects of Exposure to ELF Magnetic Fields at the Cellular, Tissue, and Animal Levels (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Test Specimen</th>
<th>Exposure Conditions*</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delgado et al., 1981,</td>
<td>Chicken embryo</td>
<td>10, 100, and 1000 Hz; 0.12, 1.2 and 12 μT; 0.5-ms rectangular pulses; 2-day exposure</td>
<td>Morphological abnormalities in nervous tissue, heart, blood vessels, and somites</td>
</tr>
<tr>
<td>1982</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soldatova, 1982</td>
<td>Rat</td>
<td>50 Hz; 20, 40, and 70 mT; 6.5 h daily for 5 days, or 24-h continuous exposure</td>
<td>Pathomorphological changes in brain tissue</td>
</tr>
<tr>
<td>Sander et al., 1982</td>
<td>Human</td>
<td>50 Hz, 5 mT; 4-h exposure</td>
<td>No changes in ECG, EEG, hormones, blood cell counts, or blood chemistry</td>
</tr>
<tr>
<td>Lubin et al., 1982</td>
<td>Mouse osteoblast cultures</td>
<td>Single bidirectional pulses at 72 Hz, or 4-kHz bursts of bidirectional pulses with 15-Hz repetition rate; 2 mT peak intensity; 3-day exposure</td>
<td>Reduced cAMP production in response to parathyroid hormone</td>
</tr>
<tr>
<td>Shober et al., 1982</td>
<td>Mouse</td>
<td>10 Hz, 1 mT; 1-day exposure</td>
<td>Decreased sodium ion content of liver</td>
</tr>
<tr>
<td>Norton, 1982</td>
<td>Cultured chicken embryo sternum</td>
<td>4-kHz bursts of bidirectional pulses with 15-Hz repetition rate; 2-mT peak intensity; four 6-h exposures during 2 days</td>
<td>Increased hydroxyproline, hyaluronate, and DNA synthesis; decreased glycosoaminoglycans; increased lysozyme activity</td>
</tr>
<tr>
<td>Conti et al., 1983</td>
<td>Cultured human lymphocytes</td>
<td>1, 3, 50, and 200 Hz; 2.3 to 6.5 mT; square-wave pulses; 3-day exposure</td>
<td>Inhibition of lectin-induced mitogenesis by 3- and 50-Hz fields</td>
</tr>
</tbody>
</table>

* The magnetic fields were sinusoidal unless otherwise indicated.
Table 3. Effects of Exposure to ELF Magnetic Fields at the Cellular, Tissue, and Animal Levels (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Test Specimen</th>
<th>Exposure Conditions*</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodman et al., 1983</td>
<td>Drosophila salivary glands</td>
<td>Single bidirectional pulses at 72 Hz, or 4-kHz bursts of bidirectional pulses with 15-Hz repetition rate; 2-mT peak intensity; 5- to 90-min exposures</td>
<td>Increased RNA transcription</td>
</tr>
<tr>
<td>Jolley et al., 1983</td>
<td>Rabbit pancreas</td>
<td>4-kHz bursts of bidirectional pulses with 15-Hz repetition rate; 2-mT peak intensity; 18-h exposure</td>
<td>Reduced Ca(^{++}) content and efflux; reduced insulin release during glucose stimulation</td>
</tr>
<tr>
<td>Ramirez et al., 1983</td>
<td>Drosophila eggs</td>
<td>0.5-ms square-wave pulses at 100 Hz, 1.76 mT peak-to-peak intensity; or 50-Hz, 1.41-mT sinusoidal field; 2-day exposure</td>
<td>Decreased viability of eggs</td>
</tr>
<tr>
<td>Ubeda et al., 1983</td>
<td>Chicken embryos</td>
<td>0.5-ms bidirectional pulses at 100 Hz (4 different waveforms); 0.4- to 104-μT peak intensity; 2-day exposure</td>
<td>Teratogenic changes in nervous system, circulatory system, and foregut</td>
</tr>
<tr>
<td>Archer and Ratcliffe, 1983</td>
<td>Cultured chicken tibiae</td>
<td>1 Hz, 15- to 60-mT square-wave pulses; 7-day exposure</td>
<td>Decreased collagenous and noncollagenous protein synthesis; no alteration in glycosoaminoglycan and DNA synthesis</td>
</tr>
<tr>
<td>Liboff et al., 1984</td>
<td>Cultured human fibroblasts</td>
<td>15 Hz to 4 kHz; 2.3 to 560 μT; 18- to 96-h exposures</td>
<td>Increased DNA synthesis</td>
</tr>
</tbody>
</table>

* The magnetic fields were sinusoidal unless otherwise indicated.
Table 3. Effects of Exposure to ELF Magnetic Fields at the Cellular, Tissue, and Animal Levels (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Test Specimen</th>
<th>Exposure Conditions*</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cain et al., 1984</td>
<td>Cultured mouse calvarium</td>
<td>Single bidirectional pulses at 72 Hz, or 4-kHz bursts of bidirectional pulses with 15-Hz repetition rate; 2.5-mT peak intensity; exposure for 1 to 16 h</td>
<td>Inhibition of cAMP production and Ca release in response to parathyroid hormone</td>
</tr>
<tr>
<td>Winters and Phillips, 1984a, 1984b</td>
<td>Cultured human colon tumor cells</td>
<td>60 Hz, 0.14 mT; 1-day exposure; transferrin receptors, and expression of tumor-specific antigens</td>
<td>Increase in growth rate, number of transferrin receptors, and expression of tumor-specific antigens</td>
</tr>
</tbody>
</table>

* The magnetic fields were sinusoidal unless otherwise indicated.
Table 4. Epidemiological Studies on the Potential Relationship of Residential and Occupational Exposure to ELF Magnetic Fields and Cancer

<table>
<thead>
<tr>
<th>Reference</th>
<th>Subjects</th>
<th>Correlation Between Increased Cancer Incidence and Residential or Occupational Exposures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wertheimer and Leeper, 1979</td>
<td>Children (< 19 yr); residential fields [344 cases; 344 controls]</td>
<td>(+)</td>
</tr>
<tr>
<td>Fulton et al., 1980</td>
<td>Children (< 20 yr); residential fields [119 cases; 240 controls]</td>
<td>(-)</td>
</tr>
<tr>
<td>Tomenius et al., 1982</td>
<td>Children (< 18 yr); residential fields [716 cases; 716 controls]</td>
<td>(+)</td>
</tr>
<tr>
<td>Wertheimer and Leeper, 1982</td>
<td>Adults; residential fields [1179 cases; 1179 controls]</td>
<td>(+)</td>
</tr>
<tr>
<td>Wiklund et al., 1981</td>
<td>Adults; telecommunication workers [Swedish Cancer Registry with 385,000 cases for 1961-1973]</td>
<td>(-)</td>
</tr>
<tr>
<td>Milham, 1982</td>
<td>Adults; male workers in 11 occupations involving electric and/or magnetic fields [Survey of 438,000 deaths in Washington State men from 1950-1979]</td>
<td>(+)</td>
</tr>
<tr>
<td>Wright et al., 1982</td>
<td>Adults; male workers in 10 electrical/electronic occupations [Cancer Surveillance Program in Los Angeles County, 1972-1979]</td>
<td>(+)</td>
</tr>
<tr>
<td>Coleman et al., 1983</td>
<td>Males aged 15-74; workers in 10 electrical/electronic occupations [South Thames Cancer Registry from 1961-1979]</td>
<td>(+)</td>
</tr>
</tbody>
</table>
Table 4. Epidemiological Studies on the Potential Relationship of Residential and Occupational Exposure to ELF Magnetic Fields and Cancer (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Subjects</th>
<th>Correlation Between Increased Cancer Incidence and Residential or Occupational Exposures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vågarö and Olin, 1983</td>
<td>Males and females aged 15-64; workers in electrical/electronic occupations [Swedish Cancer Registry with 385,000 cases from 1961-1973]</td>
<td>(+)</td>
</tr>
</tbody>
</table>
REFERENCES

Davis, H. P., S. J. Y. Mizumori, H. Allen, M. R. Rosenzweig, E. L. Bennett, and

and individual or combined electric and magnetic fields. Radiat. Res. 78:
485-501.

Gould, J. L., J. L. Kirschvink, and K. S. Deffeyes, 1978. Bees have magnetic

Fotopoules, 1984. A double-blind evaluation of 60-Hz field effects on
human performance, physiology, and subjective state. Presented at 23rd

environmental exposures to static and ELF electromagnetic fields.

Biology of Non-ionizing Radiation: Static and ELF
Electromagnetic Fields. Grandolfo, M., S. M. Michaelson, and A. Rindi,
eds. Plenum, New York.

Greenberg, B., V. P. Vindokas, and J. R. Gauger, 1981a. Biological effects of
a 765-kV transmission line: exposures and thresholds in honeybee colonies.

Bioelectromagnetics 2: 315-328.

Response of honey bees, Apis mellifera L., to high-voltage transmission
lines. Environ. Entomol. 10: 600-610.

fields and the slime mold Physarum polycephalum: evidence of depressed
cellular function and of internuclear interaction. Radio Science 14(65):
103-107.

Male, J. C., W. T. Norris, and M. W. Watts, 1984. Human exposure to power-

Mantell, B., 1975. Untersuchungen über die Wirkung eines magnetischen Wechselfeldes 50 Hz auf den Menschen (Investigations into the effects on man of an alternating magnetic field at 50 Hz) Ph.D. diss., University of Freiburg, Germany.

Syvorotok 16: 234-238.
perinatal and adult exposures to low intensity 0.5 Hz magnetic fields.

and wet organ weight changes in rats exposed to different low intensity
0.5 Hz magnetic fields and pre-experimental caging conditions. Int. J.

Polk, C., 1984. Motion of counterions on a cylindrical cell surface: a
possible mechanism for the action of low-frequency, low-intensity magnetic
fields which displays unsuspected frequency dependence. Presented at 23rd

243-244.

effects. Handbook of Biological Effects of Electromagnetic Fields.
C. Polk and E. Postow, eds. CRC Press, Boca Raton, Florida.

Oviposition and development of Drosophila modified by magnetic fields,
Bioelectromagnetics 4: 315-326.

Ramon, C., M. Ayaz, and D. D. Streeter, Jr., 1981. Inhibition of growth rate
of Escherichia coli induced by extremely low-frequency weak magnetic

A pilot study of the interaction of extremely low frequency electromagnetic
fields with brain organelles. Compilation of Navy-Sponsored ELF
Biomedical and Ecological Research Reports, Vol. 1 Tech. Memo. No. 3

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.