Title
CHEMISTRY OF CYCLIC OLEFINS AND POLYENES ON NICKEL AND PLATINUM SURFACES

Permalink
https://escholarship.org/uc/item/0dr2w5zr

Author
Tsai, M-C.

Publication Date
1982-07-01
Submitted to the Journal of the American Chemical Society

CHEMISTRY OF CYCLIC OLEFINS AND POLYENES ON NICKEL AND PLATINUM SURFACES

Min-Chi Tsai, Judith Stein, Cynthia M. Friend and E.L. Muettterties

July 1982
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Chemistry of Cyclic Olefins and Polyenes on Nickel and Platinum Surfaces

Min-Chi Tsai, Judith Stein, Cynthia M. Friend
and E. L. Muettterties*

Materials and Molecular Research Division
Lawrence Berkeley Laboratory

and

Department of Chemistry
University of California
Berkeley, California 94720

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098; and by the National Science Foundation, and by the Miller Institute for Basic Research in Science.
This manuscript was printed from originals provided by the authors.
Carbon-hydrogen and carbon-carbon bond breaking processes have been mechanistically examined for cyclic olefins and polyenes chemisorbed on specific crystal faces of nickel and platinum. Conversion of \(\text{c-C}_n\text{H}_m \) unsaturated hydrocarbons to chemisorbed \(\text{c-C}_n\text{H}_n \) species appears to be a common reaction path. For example, \(\text{c-C}_8\text{H}_8 \) was thermally formed respectively from 1,5-cyclooctadiene or cyclooctene on Pt(111). Most interesting was the reversible (partially) desorption of the isomeric cycloheptatriene and norbornadiene molecules. In addition, these two molecules respectively undergo nonselective and regioselective bond breaking processes to yield benzene. Using specifically deuterium labeled molecules, it was established that the norbornadiene to benzene process on Pt(111) proceeds by scission of the bridging \(\text{CH}_2 \) carbon atom and that the cycloheptatriene to benzene process on Ni(100) probably proceeds by initial formation of a \(\text{C}_7\text{H}_7 \) chemisorption state.
Acyclic olefins and alkynes chemisorb on clean metal surfaces in a largely irreversible fashion because of the facility with which C-H bond breaking occurs from thermally excited states derived from the initial, \(\pi \)-bound chemisorption states. In contrast, cyclohexene and the cyclohexadiene isomers undergo dehydrogenation on clean Ni and Pt surfaces at 0-130°C to form chemisorbed benzene.\(^1\) Facile dehydrogenation of chemisorbed cyclic olefins is expected because some of the hydrogen atoms bonded to saturated carbon centers will closely approach the metal surface.\(^2\) Accordingly, we projected a dehydrogenation process general to cyclic olefins on clean, atomically flat metal surfaces (1) whereby

\[
M-(c-C_{n}H_{m}) \longrightarrow M-(c-C_{n}H_{m}) + M-H
\]

(1)

a delocalized \(c-C_{n}H_{m} \) state might be generated at moderate temperatures. We describe here an ultra high vacuum study\(^3,4\) of \(C_{4} \) through \(C_{8} \) cyclic olefin and polyene chemisorption on Ni and Pt surfaces. A mechanistic definition for the novel surface mediated conversions of cycloheptatriene and norbornadiene to benzene is also presented.

If the postulated (1) dehydrogenation process prevails, then even-membered rings would produce species potentially displaceable as \(C_{n}H_{m} \) molecules. In fact, cyclobutene chemisorbed irreversibly on Ni and Pt; no hydrocarbon species could either be desorbed thermally or displaced by \(P(CH_{3})_{3} \). As noted above, cyclohexene and cyclohexadiene are converted to benzene on all Ni and Pt surfaces.\(^1\) Cyclooctene and 1,5-cyclooctadiene were partially converted to chemisorbed cyclooctatetraene on Pt(111) as established by \(P(CH_{3})_{3} \) displacement reactions.

Thus, sequence (1) appears to be a common but not necessarily dominant one for cyclic olefins with \(n(C_{n}) \) an even number on these surfaces. Only for \(n(C_{n}) = 6 \) is sequence (1) the dominant one established\(^1,5\) for the surfaces investigated.
For the odd-membered cyclic olefins, sequence (1) would produce a bound C\textsubscript{n}H\textsubscript{n} "radical" which would not be thermally desorbable or chemically displaceable as a C\textsubscript{n}H\textsubscript{n} radical. Cyclopentene chemisorption was irreversible on Pt(111) as expected (Eq. 1)6 and, the surface behavior of cycloheptatriene suggested a C\textsubscript{7}H\textsubscript{7} intermediate state on Ni(100). Cycloheptatriene chemisorption on Ni(110), Ni(100), Pt(111) and Pt(100) is partially thermally reversible only at high coverages as shown by the respective C\textsubscript{7}H\textsubscript{8} desorption maxima at 100, 120, 115 and 115°C. Cochemisorption of D\textsubscript{2} and cycloheptatriene on these surfaces followed by thermal desorption yielded cycloheptatriene free of deuterium. Hence, the states preceding desorption are molecular. One plausible stereochemistry for molecularly bound cycloheptatriene is, 1, which also can explain a competing C-C bond breaking process on Ni(100) as discussed below.

Heating of Ni(100)-cycloheptatriene led to three competing processes: reversible desorption, benzene desorption and gross decomposition (Fig. 1). Benzene formation was a fast reaction only at \textasciitilde 100°C as shown by P(CH\textsubscript{3})\textsubscript{3} displacement of benzene from Ni(100)-C\textsubscript{7}H\textsubscript{8} if the crystal was first heated to 100°C (none was displaced with a 70°C pretreatment). Consistently, there was a small H\textsubscript{2} desorption maximum at \textasciitilde 90°C (Fig. 1) characteristic of Ni(100)-H. For Ni(100)-cycloheptatriene-7-d\textsubscript{1} desorption, the cycloheptatriene desorbed was C\textsubscript{7}H\textsubscript{7}D and the benzene molecules desorbed at 230°C consisted of C\textsubscript{6}H\textsubscript{5}D and C\textsubscript{6}H\textsubscript{6} in a 6:8 molar ratio. We suggest that a significant fraction of chemisorbed cycloheptatriene can be represented as in 1 and that subsequent processes can be represented as in sequence (1). Formation of a Pt(100)-C\textsubscript{7}H\textsubscript{7} and Pt(100)-H state below \textasciitilde 100°C as the precursor state to chemisorbed benzene is consistent with key observations: (i) displacement by P(CH\textsubscript{3})\textsubscript{3} of benzene from a Ni(100)-C\textsubscript{7}H\textsubscript{8} state heated to 100°C, (ii) hydrogen desorption at \textasciitilde 90°C consistent with the
formation of Ni(100)−C\textsubscript{7}H\textsubscript{7} and Ni(100)−H from below 100°C,
and (iii) the ratio of C\textsubscript{6}H\textsubscript{5}D to C\textsubscript{6}H\textsubscript{6} formed in the conversion of C\textsubscript{7}H\textsubscript{7}D to benzene.7 Conversion of chemisorbed C\textsubscript{7}H\textsubscript{8}−d\textsubscript{1}, 1 to a delocalized C\textsubscript{7}H\textsubscript{7} or C\textsubscript{7}H\textsubscript{6}D surface species would yield a statistical ratio of C\textsubscript{6}H\textsubscript{5}D to C\textsubscript{6}H\textsubscript{6} of 6 to 8 as observed. No cycloheptatriene was converted to benzene on Ni(110), Pt(111) and Pt(100); why benzene formation from cycloheptatriene is unique to the Ni(100) surface is not understood.

Norbornadiene chemisorption on Pt(111) and Pt(100)8 was partially reversible with a desorption maximum at ~115°C. Competitive with desorption of the diene9 were gross decomposition and benzene formation at high temperatures (Fig. 2). Reversible norbornadiene chemisorption on these Pt surfaces only occurs at high coverages. Benzene formation from the chemisorbed norbornadiene on Pt(111) is a high temperature process occurring at 225-250°C as established by the thermal desorption spectra in which benzene desorbed at ~250°C, by the absence of hydrogen desorption below ~180°C, and by P(CH\textsubscript{3})\textsubscript{3} displacement of benzene but only at temperatures above 220°C.

Adsorption of norbornadiene-7-d\textsubscript{1} on Pt(111) followed by thermal desorption showed that the thermally generated benzene molecules contained no deuterium. Thus, the bridging carbon atom in norbornadiene is regioselectively removed in the benzene formation process.11 The yield of benzene was low, 10-20%. For Pt(100), the norbornadiene chemistry was analogous to that for Pt(111) with benzene desorbing at 250°C (maximum rate); the only substantive difference was the H\textsubscript{2} desorption maxima at ~160, 260 and 400°C. The benzene produced from Pt(100)−norbornadiene-7-d\textsubscript{1} contained about 15-20% C\textsubscript{6}H\textsubscript{5}D. Benzene appears not to be formed regioselectively from the diene on this surface, but this system is more complicated because of H-D exchange between chemisorbed C\textsubscript{6}H\textsubscript{6} and D atoms on Pt(100). We have established that such an exchange process is
operative on Pt(100)12 but not on Pt(111).10

Acknowledgements

We thank the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract Number DE-AC03-76SF00098, and by the National Science Foundation for support of this research, the Miller Institute for Basic Research in Science for a grant in the form of a Miller Professorship (ELM), and Professor J.R. Wiseman for information concerning the synthesis of cyclobutene.

Supplementary Material

Synthesis, purification and spectral characterization data for cycloheptatriene-7-d1 and norbornadiene-7-d1 and the desorption and displacement data for cyclooctatetraene and 1,5-cyclooctadiene on Pt(111) (3 pages). See any current masthead for ordering information.
REFERENCES AND FOOTNOTES

2. (a) Such a stereochemistry invariably leads to carbon-hydrogen bond breaking on metal surfaces. 12b (b) Muetterties, E.L., ACS Symp. Ser., 1981 155 273.

3. The metal surfaces studied were Ni(111), Ni(100), Ni(110), Pt(111), Pt 6(111)x(111) and Pt(100) for n(C_n) = 6 and Ni(100), Pt(111) and Pt(100) for the others.

5. Reaction sequence (1) may be more general and more dominant than it appears from our thermal desorption and chemical displacement reactions; spectroscopic studies, now in progress, are required to pursue this possibility. A problem in characterization of the reaction (1) hypothesis by desorption or displacement studies is that the binding of a C_nH_n species to a specific metal surface may be too strong for facile displacement and thermal reactivity may be too high to allow characterization by thermal desorption. In the decomposition of cyclobutene on the Pt(111) and Pt(100) surfaces, there were 2 H_2 desorption maxima of relative intensities of ∼2 and 4 with lower temperature maxima at 135 and 100°C, respectively. These data are consistent with, but do not define the process

\[\text{Pt-}_\text{c-}C_4H_6 \xrightarrow{\text{<100-135°C}} \text{Pt-}_\text{c-}C_4H_4. \]
6. Presumably, cyclopentene generates \(\pi-C_5H_5 \) states but our spectroscopic studies of this system are presently incomplete.

7. No conversion of cycloheptatriene to toluene was detected for the Ni(100) surface.

8. The norbornadiene chemisorption state formed at 20°C showed that the metal substrate had Pt(100)-(1x1) crystallography—an analogous surface crystallography prevails for the benzene chemisorption state formed at 20°C on this surface plane.

9. Our mass spectrometric characterization of the hydrocarbon desorbing at this temperature does not distinguish between three plausible \(C_7H_8 \) isomers, however, this is not toluene for the species desorbing from Pt(111) based on established chemistry. We cannot make this distinction for Pt(100). If cycloheptatriene were formed from the norbornadiene on these surfaces, the resultant chemistry would be different and no benzene would be produced.

11. Regioselective scission of \(CH_2 \) from norbornadiene to give benzene cannot proceed directly from an \(\pi^- \)-norbornadiene surface chemisorption state on a flat surface because the \(CH_2 \) group would project away from the surface plane in such a state. Possibly, that fraction of the diene molecules converted to benzene molecules is chemisorbed initially through a single olefinic bond with the \(CH_2 \) bridging group projected towards the surface plane.

12. Tsai, M.-C. and Muetterties, E.L., to be published.
In the rapid heating, 20° sec⁻¹, of Ni(100)-cycloheptatriene, three different species desorbed from this surface: cycloheptatriene, hydrogen and benzene; these competing thermal processes of reversible cycloheptatriene desorption, decomposition, and benzene formation respectively, are illustrated above with the intensities of the major ions of 91, 2 and 78 plotted as a function of temperature. For normalization of intensities, the parenthetical numbers should be used. The (0.1) value simply indicates that the intensities relative to the (1.0) set should be decreased by a tenth for direct comparisons of intensities of all three molecular species. The low temperature H₂ desorption maximum observed for Ni(100)-cycloheptatriene coincides with that for Ni(100)-H at comparable H atom coverages—presumably this hydrogen is formed from hydrogen atoms generated in the C₇H₈ → C₇H₇ process. The two high temperature H₂ desorption maxima observed for this system and also for Pt(111)-norbornadiene (Fig. 2) show that the gross decomposition of the major hydrocarbon fragments is a multisteped process; however, no mechanistic interpretation is warranted based on available data.
Intensity

Temperature (°C)

≈120°C

≈230°C

≈240°C

≈90°C

≈350°C

amu 91, (C₇H₈-H)⁺

amu 78, (C₆H₆)⁺

amu 2, (H₂)⁺
Figure 2.

Pt(111)-norbornadiene, formed at 20°C, when heated at ~20° sec⁻¹ undergoes three competing thermal processes of molecular desorption of norbornadiene (mass 91), decomposition to give hydrogen (mass 2), and conversion to benzene (mass 78). For normalization of intensities, the parenthetical numbers should be used. The (0.1) value simply indicates that the intensities relative to the (1.0) set should be decreased by a tenth for direct comparisons of intensities of all three molecular species. Note that at low coverages, Pt(111)-H yields in the thermal desorption experiment an H₂ maximum at ~130°C.
Intensity

Temperature (°C)

≈115°C
(0.1)
amu 91, \((\text{C}_7\text{H}_8-\text{H})^+\)

≈250°C
(0.1)
amu 78, \((\text{C}_6\text{H}_6)^+\)

≈260°C
(1)
amu 2, \((\text{H}_2)^+\)

≈390°C
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.