Recent Work

Title
HIGH-RESOLUTION XPS SPECTRA OF Ir, Fb, AMD Au VALENCE BANDS

Permalink
https://escholarship.org/uc/item/0f66897b

Author
Kowalczyk, S.

Publication Date
1972-07-01
HIGH-RESOLUTION XPS SPECTRA OF Ir, Pt, AND Au VALENCE BANDS

S. Kowalczyk, L. Ley, R. Pollak, and D. A. Shirley

July 1972

AEC Contract No. W-7405-eng-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
HIGH-RESOLUTION XPS SPECTRA OF Ir, Pt, AND Au VALENCE BANDS†

S. Kowalczyk, L. Ley ++, R. Pollak †, and D. A. Shirley

Department of Chemistry and
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

July 1972

Structural features in the valence band XPS spectra vary from Ir (Z = 77) to Au (Z = 79) as expected on the basis of 5d6s band filling.

X-ray photoelectron spectroscopy (XPS) spectra (hereafter denoted by I(E)) of the valence bands of several sixth-row elements have been reported earlier [1,2]. Those spectra were obtained from heated metal foils at resolutions of \(\sim 1 \) eV, in the presence of hydrogen gas. Although trends in I(E) for the fcc-metals Ir, Pt, and Au were suggestive of band filling, detailed interpretation was precluded both by experimental limitations and by a lack of appropriate theoretical densities of states, \(\rho(E) \), with which to compare I(E). Several relativistic \(\rho(E) \) calculations on Au have recently become available. Two of them [3,4] compare very well with the high-resolution \((\sim 0.6 \) eV) XPS spectrum of Au [5]. In this Letter we report the results of a high-resolution study of I(E) for Ir, Pt, and Au that confirms the band-filling model for these elements.

†Work performed under the auspices of the U. S. Atomic Energy Commission.

++ On leave from University of Bonn, Germany.

†In partial fulfillment of Ph.D.
The experimental procedures have been described elsewhere [6]. Briefly, high-purity single crystals were spark-cut, mechanically polished, electropolished, and introduced into a sample-preparation chamber at 2×10^{-7} Torr. They were then argon-ion bombarded ($10 \mu A$, 1000 eV) at 8×10^{-5} Torr of argon and introduced into a Hewlett-Packard HP 5950A ESCA spectrometer at 8×10^{-9} Torr. In-situ monitoring of the carbon ls and oxygen ls lines showed these elements to be present in negligible amounts.

The raw spectra $I(E)$ are shown in Fig. 1, together with $I'(E)$, the spectra after correction for inelastic scattering. The similarity of $I'(E)$ for these three elements is striking and its variation from Ir to Pt to Au confirms band-structure expectations. To permit discussion of these $I'(E)$ within the framework of theoretical $\rho(E)$ predictions, we have truncated the $\rho(E)$ for Au, as calculated by Connolly and Johnson [2], to correspond to occupancies of 9 and 10 electrons in the 5d6s bands, thus simulating Ir and Pt, respectively. The results were broadened to simulate the experimental resolution [1,5], and the energy scales were expanded by 1.35 for Ir and 1.20 for Pt, to roughly match the experimental bandwidths. The resulting very approximate $\rho(E)$'s are also shown in Fig. 1.

Proceeding from Ir to Pt to Au, the band-filling phenomenon is quite evident. Four features, numbered in Fig. 1, are present in all three cases. These are: (1) A shoulder at 6.8 eV in Ir, 6.1 eV in Pt, and 7.0 eV in Au. (2) A peak at 3.8 eV in Ir, 4.3 eV in Pt, and 6.1 eV in Au. (3) A minimum at 3.0 eV in Ir, 3.3 eV in Pt, and 5.0 eV in Au. This feature is present in the calculated $\rho(E)$ for Au only if spin-orbit interaction is included. It may be less pronounced in Ir and Pt because for these lighter elements the ratio of
lattice interactions to spin-orbit interactions is larger. Another peak component at 1.45 eV in Ir, 1.75 eV in Pt, and 3.55 eV in Au. The quoted energies are known to ± 0.1 eV.

A fifth feature—a second component of the second peak—appears at 0.8 eV in Pt and at 2.65 eV in Au. This part of ρ(E) is at least partially unoccupied in Ir. The dip between features 4 and 5 is very shallow, especially in Au. In Au the 5d bands have become filled and dropped below EF, as expected. The width of the occupied 5d bands as measured between the outermost inversion points of Ι'(E) decreases systematically from 7.4 eV (Ir) to 7.1 eV (Pt) to 5.4 eV (Au). This is also expected. In auxiliary studies on liquid Hg (Z = 80) we found that the 5d states have assumed the character of a spin-orbit split core doublet, at 7.7 eV and 9.5 eV.

In summary, these high-resolution XPS spectra support the band-filling concept in considerable detail. It would be of interest to compare these Ι'(E) spectra with ρ(E) results from a systematic theoretical study of these three adjacent isostructural elements.

One of us (L.L.) greatly appreciates a grant from the Max Kade Foundation. We thank Professor G. A. Somorjai for providing us with single crystals of Ir, Pt, and Au.
References

Figure Caption

Fig. 1. Left panels and left ordinate: experimental XPS spectra of 5d6s bands of Ir, Pt, and Au. Upper curve in each case shows raw spectrum $I(E)$; lower curve is the corrected spectrum $I'(E)$. Data were all taken digitally. They are shown as points only for the leading edges of the 5d bands, where data density permits. Right panels and right ordinate: Theoretical densities of states obtained by broadening Connolly and Johnson's $\rho(E)$ results. For Ir and Pt this $\rho(E)$ was truncated and the energy scale expanded.
Fig. 1
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.