Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases

https://escholarship.org/uc/item/0fx7z9qn

BMC Proceedings, 6(Suppl 3)

1753-6561

Park, Sung-Jun
Ahmad, Faiyaz
Philp, Andrew
et al.

2012-06-27

http://dx.doi.org/10.1186/1753-6561-6-S3-P73

Peer reviewed
Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential anti-aging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca2+ levels and activates the CamKKβAMPK pathway via phospholipase C and the ryanodine receptor Ca2+ release channel. As a consequence, resveratrol increases NAD+ and the activity of Sirt1. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including prevention of diet-induced obesity and an increase in mitochondrial function, physical stamina, and glucose tolerance in mice.