Lawrence Berkeley National Laboratory
Recent Work

Title
X-RAY PHOTOELECTRON SPECTROSCOPY OF SOME NICKEL COMPOUNDS

Permalink
https://escholarship.org/uc/item/0qt070rd

Authors
Pont, L.O.
Siedle, A.E.
Lazarus, M.S.
et al.

Publication Date
1973-08-01
X-RAY PHOTOELECTRON SPECTROSCOPY OF SOME NICKEL COMPOUNDS

L. O. Pont, A. R. Siedle, M. S. Lazarus, and W. L. Jolly

August 1973

Prepared for the U. S. Atomic Energy Commission under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
X-Ray Photoelectron Spectroscopy of Some Nickel Compounds

By L. O. Pont, A. R. Siedle, M. S. Lazarus, and W. L. Jolly*

We have determined the nickel 2p_{3/2} binding energies of various nickel complexes, including dicarbollide complexes in which the nickel ostensibly has oxidation states of +3 and +4. The data are presented in Table I.

We note two significant features of the data.

First, the binding energies of the Ni(III) and Ni(IV) dicarbollide complexes are of the same general magnitude as those of the Ni(II) complexes. This is at first sight surprising because of the expected correlation of binding energy with oxidation state. (Thus, Tolman et al. have observed that the Ni 2p_{3/2} binding energy for K_{2}NiF_{6} is about 5 eV higher than the average value found for typical Ni(II) compounds.) We believe the low binding energies of the dicarbollide complexes are a consequence of the low electronegativities of the donor atoms in these complexes.

The nickel-coordinated carbon and boron atoms of the dicarbollide groups donate considerably more electron density to the metal atoms than do the relatively electronegative oxygen and nitrogen atoms in complexes such as Ni(H_{2}O)_{6}^{2+} and Ni(en)_{3}^{2+}. Consequently, the atomic charges of the nickel atoms in the two classes of complexes are not markedly different. The
Table I

Nickel $2p_{3/2}$ Binding Energies

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ni Oxid. State</th>
<th>E_B, eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1,2$-$B_9C_{2}H_{11})_2Ni^a$</td>
<td>4</td>
<td>857.2</td>
</tr>
<tr>
<td>$[1,2-(CH_3){2}B_9C{2}H_{11}]_2Ni^a$</td>
<td>4</td>
<td>856.6</td>
</tr>
<tr>
<td>$(B_{10}H_{10}CNH_3)_2Ni^b$</td>
<td>4</td>
<td>856.5</td>
</tr>
<tr>
<td>$Rb[(1,7$-$B_9C_{2}H_{11})_2Ni]^c$</td>
<td>3</td>
<td>855.9</td>
</tr>
<tr>
<td>$K[(1,2$-$B_9C_{2}H_{11})_2Ni]^a$</td>
<td>3</td>
<td>855.6</td>
</tr>
<tr>
<td>$K[(1,2-(CH_3){2}B_9C{2}H_{11})_2Ni]^a$</td>
<td>3</td>
<td>855.6</td>
</tr>
<tr>
<td>$[Ni(H_2O)_6]Cl_2$</td>
<td>2</td>
<td>857.7</td>
</tr>
<tr>
<td>$K_2[Ni(CN)_4]·H_2Od$</td>
<td>2</td>
<td>856.6</td>
</tr>
<tr>
<td>$K[Ni(gly)_3]^e,f$</td>
<td>2</td>
<td>856.5</td>
</tr>
<tr>
<td>$KNiO_6·0.5H_2O^g$</td>
<td>2</td>
<td>856.0</td>
</tr>
<tr>
<td>$Ni(DMG)_2^h$</td>
<td>2</td>
<td>855.6</td>
</tr>
<tr>
<td>$[Ni(en)_3]S_2O_3^i$</td>
<td>2</td>
<td>855.6</td>
</tr>
<tr>
<td>$(C_5H_5)Ni_3(CO)_2^j$</td>
<td>1</td>
<td>855.0</td>
</tr>
</tbody>
</table>

data serve to emphasize the fact that there is no direct correlation between the oxidation state and charge of an atom.

Second, there is a definite increase of about 1 eV in binding energy on going from the Ni(III) dicarbollide complexes to the Ni(IV) dicarbollide complexes. Apparently the increase in positive charge accompanying one-electron oxidation is somewhat localized on the nickel atoms, and there is no need to consider redox reactions of the ligands. This result is in contrast to that obtained for nickel dithiolate complexes. Redox reactions of the latter complexes involve no significant Ni 2p3/2 shifts, indicating that the valence electrons are principally added to or removed from the ligands.

Several other points are worthy of mention. We have no good explanation for the low binding energy observed for KNi\textsubscript{10}·0.5H\textsubscript{2}O, which is supposed to be a Ni(IV) complex. Perhaps our data correspond to a thin layer of reduction product on the surface of the sample. Or perhaps the compound is really a Ni(II) complex with coordinated peroxy groups; samples of this compound invariably show a weak paramagnetism. The fairly high binding energy observed for the Ni(II) complex K\textsubscript{2}[Ni(CN)\textsubscript{4}]·H\textsubscript{2}O (in spite of the coordination of relatively electropositive carbon atoms) is probably attributable to back-bonding. The low binding energy observed for (C\textsubscript{5}H\textsubscript{5})\textsubscript{3}Ni\textsubscript{2}(CO)\textsubscript{2} is consistent with the low oxidation state of nickel and the low electronegativity of the coordinated carbon atoms.
Experimental Section

Aluminum K$_\alpha$ X-rays were used with the iron-free, double-focussing magnetic spectrometer. The compounds were either purchased or prepared by procedures given in the references indicated in Table I. Each compound was powdered and brushed onto two copper tapes which were mounted on separate metal sample holders. One sample was coated with a thin layer (2 x 10^{-4} mg/cm2) of gold by vacuum deposition. The chemical shift between the nickel 2p$_{3/2}$ level and a core level of some other element in the compound which served as an intermediate reference (e.g., boron, chlorine, etc.) was determined from the spectrum of the uncoated sample. The chemical shift between the core level of the reference element and the 4f$_{7/2}$ level of gold was determined from the spectrum of the gold-coated sample. The two data were then used to calculate the binding energy of the nickel 2p$_{3/2}$ level, assuming a binding energy of 84.0 eV for the gold 4f$_{7/2}$ level. This roundabout procedure was necessitated by the extremely weak Ni 2p$_{3/2}$ peaks observed for gold-coated samples. The full width at half maximum for the Ni 2p$_{3/2}$ peaks was generally about 3 eV; duplicate runs indicated that the chemical shifts are reproducible to ±0.3 eV.

We were unable to obtain a satisfactory spectrum of the Ni(IV) complex (NH$_4$)$_6$NiMo$_9$O$_{32}$; the Ni 2p$_{3/2}$ peak was buried in the background noise. The compound turned from black to grey upon X-ray irradiation; undoubtedly decomposition occurred. The measured magnetic susceptibility of the KNiI0$_6$·0.5H$_2$O sample corresponded to $\mu_{\text{eff}} = 0.7$.
Acknowledgements.—We are grateful to Professor M. F. Hawthorne for providing a sample of \((1,2-\text{B}_2\text{H}_11)_2\text{Ni}\), to Mr. W. Tam for preparing a sample of \((\text{NH}_4)_6\text{NiMoO}_9\text{S}_2\), and to Mr. W. B. Perry for experimental assistance. This work was supported by the U. S. Atomic Energy Commission.
References

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.