Lawrence Berkeley National Laboratory

Recent Work

Title
MULTIPHOTON IONIZATION PHOTOELECTRON SPECTROSCOPY OF CC12F2 AND CC13F

Permalink
https://escholarship.org/uc/item/0h84d9w1

Author
Hepburn, J.W.

Publication Date
1982
Submitted to the Journal of Chemical Physics

MULTIPHOTON IONIZATION PHOTOELECTRON SPECTROSCOPY OF CCl$_2$F$_2$ AND CCl$_3$F

J. W. Hepburn, D.J. Trevor, J.E. Pollard, D.A. Shirley and Y.T. Lee

January 1982
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
MULTIPHOTON IONIZATION PHOTOELECTRON SPECTROSCOPY OF CC\textsubscript{12}F\textsubscript{2} AND CC\textsubscript{13}F

J. W. Hepburna, D. J. Trevor, J. E. Pollard, D. A. Shirley and Y. T. Lee

Materials and Molecular Research Division
Lawrence Berkeley Laboratory
and Department of Chemistry
University of California
Berkeley, CA 94720

In the past few years, there has been great interest in elucidating the detailed mechanism for the fragmentation that occurs during multiphoton ionization (MPI) of polyatomic molecules. This efficient and extensive fragmentation was quite surprising when it was first seen,1 and only recently has the mechanism for fragmentation of benzene been made clear.2-5 The mechanism for benzene is a sequential one, in which initial absorption ionizes benzene to give C\textsubscript{6}H\textsubscript{6}+, and subsequent absorption of photons by this ion results in fragmentation.

In other molecules, radiationless processes in the neutral molecule can dramatically alter the nature of the multiphoton ionization process.6-8 In this Communication, we discuss a multiphoton ionization study of CC\textsubscript{12}F\textsubscript{2} and CC\textsubscript{13}F in which an ArF laser was used as the ionizing laser and the resulting photoelectrons were energy analyzed. Our data show that extensive and sequential fragmentation of the parent molecules to smaller neutral radicals precedes ionization, resulting in the formation of small fragment ions such as CF+ and CCl+ from the corresponding radicals, via such processes as:

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract Number W-7405-ENG-48; and in part by the National Science Foundation under Grant Number CHE79-16250.
1) \[
\text{CCl}_2\text{F}_2 \xrightarrow{h\nu} \text{CClF}_2 + \text{Cl} \xrightarrow{h\nu} \text{CF} + (\text{FCl} \text{ or } \text{F} + \text{Cl}) \xrightarrow{h\nu} \\
\text{CF}(^2\Delta) \xrightarrow{h\nu} \text{CF}^+(X^1\Sigma^+) + e^-
\]
2) \[
\text{CCl}_3\text{F} \xrightarrow{h\nu} \text{CCl}_2\text{F} + \text{Cl} \xrightarrow{h\nu} \text{CCl} + (\text{FCl} \text{ or } \text{F} + \text{Cl}) \xrightarrow{2h\nu} \\
\text{CCl}^+ + e^-
\]
The experiments were performed with a molecular beam photoelectron spectrometer described in detail elsewhere.\(^9\) Briefly, \text{CCl}_2\text{F}_2 \text{ or } \text{CCl}_3\text{F} \text{ molecules in a collimated supersonic beam were ionized with focused radiation from an ArF laser (Lumonics TE-861). The resulting ions could be mass analyzed by a quadrupole mass spectrometer, or the resulting photoelectrons could be energy-analyzed by an electrostatic energy analyzer equipped with a multichannel detector. The instrumental energy resolution used for these experiments was 20 meV (FWHM), as measured from the 584 Å photoelectron spectrum of Ar.}

The laser was spatially filtered to less than 5 mJ/pulse and then loosely focused by a 50 cm focal length lens to a spot of ~0.02 cm\(^2\), resulting in power densities of less than 25 MW/cm\(^2\). The linewidth of the laser was measured to be 7 Å (FWHM), or about 25 meV, centered at 1933 Å (6.41 eV).

The electron energy spectra resulting from MPI of \text{CCl}_2\text{F}_2 \text{ and } \text{CCl}_3\text{F} \text{ are shown in Fig. 1. No electrons were detected at energies above 4 eV in either case, and for both molecules the energy spectra below 2 eV were featureless continua. The regions of the measured spectra showing recognizable structure are shown in Fig. 1.}
To minimize the effects of laser power fluctuations, each spectrum was recorded as a series of ten or more individual scans, which were then added. In each case the scan was from high to low kinetic energy, and the data as shown are uncorrected for the 20%–30% drop in laser power that occurred during each scan. The count rate for the 3.6 eV peak in the CCl$_2$F$_2$ spectrum was found to be proportional to the laser power to the 3.5 ± 0.5 power, implying that in order to form those electrons the system absorbs more than three photons.

The mass spectra of the ions formed by multiphoton ionization showed CF$^+$ to be the major ion formed in both cases. For CCl$_2$F$_2$, the ions seen and their intensities relative to CF$^+$ were: CF$^+$ (1.0), CF$_2$Cl$^+$ (0.35), CCl$_2$ (0.15), C$^+$ (0.05). For CCl$_3$F, the ions seen and their relative intensities were: CF$^+$ (1.0), Cl$_2$ (0.8), CCl$_3$ (0.7), CFCl$_2$ (0.6), C$^+$ (0.2). In neither case was the parent molecular ion seen (CCl$_2$F$_2^+$ or CCl$_3$F$^+$).

Thus, CCl$_2$F$_2$ and CCl$_3$F are very similar to other molecules ionized by the ArF laser10 in that extensive fragmentation is seen. However, unlike benzene1 and several other large molecules,11 the parent ions are not observed, and in fact a small fragment, CF$^+$, is the major product.

The fact that the parent ions are not observed is not surprising in light of the known photochemistry of these freons.12,13 The absorption spectra around 1933 Å are both structureless continua, and both molecules photoassociative with a unit quantum yield, the major channel being Cl atom elimination. Thus, as was seen in the case of C$_6$H$_5$I,7 the
photodissociation following the absorption of the first photon is too rapid to allow absorption of additional photons by the parent molecule which would result in parent ion formation.

The photoelectron spectra shown in Fig. 1 have several well resolved features, as well as underlying continua. In both cases, but especially with CC\textsubscript{2}F\textsubscript{2}, a vibrational progression with a large spacing can be seen. This sort of energy spectrum is typical of photoelectron spectra of diatomics14 and can be assigned to be the result of two photon ionization of CF to give CF+, as shown in Fig. 1. Although the CF+ vibrational spacing has not been previously measured, an estimate can be obtained from known Rydberg states in CF15. The vibrational spacing expected is about 1800-1900 cm-1, and from the peaks observed the measured spectral constants for CF+ are: $\omega_e = 1800 \pm 40$ cm-1 (223 ± 5 meV) and $\omega_e \chi_e = 10 \pm 10$ cm-1 (2 ± 2 meV). Although the ionization energy of CF has not been measured directly, it has been estimated from spectral data to be 8.9 eV16 and derived from appearance potential data to be 9.23 ± 0.0817. Thus our measured value of 9.0 ± 0.2 eV is what one would expect for CF. The major cause of uncertainty in this ionization potential is the difficulty of determining the absolute energy calibration of the electron energy analyzer for these experiments. It should be noted that despite this uncertainty in absolute electron energy, relative energies in a spectrum can be determined with high accuracy, about ±10 meV in these experiments.
The fact that CF$^+$ is seen with high yield is a result of coincidence of the ArF wavelength with an absorption in CF.18 The band origin for the $X^2\Pi(v''=0) \rightarrow B^2\Delta(v'=2)$ absorption is at 1936 Å, which overlaps with the ArF laser spectral distribution. The intensities of the various vibrational states of CF$^+$ are determined by the intermediate state, which is a non-Rydberg state of CF.19 When reasonable corrections are made to account for overlapping bands in the energy spectrum, and laser power drift, the observed intensities agree with Franck-Condon factors calculated for transitions from $v=2$ of $B^2\Delta$ in CF to the final vibrational states in the $X^1\Sigma^+$ state20 of CF$^+$ (for the $B^2\Delta$ state $B_e = 1.321$ cm$^{-1}$,19 for the CF$^+$ X state B_e was estimated to be 1.725 cm$^{-1}$, based on the $A^2\Sigma^+$ and $D^2\Pi$ Rydberg states).

In CC$_3$F, the energy spectrum due to two-photon ionization of CC$_1$ is observed, as shown in Fig. 1. The 3.8 eV peak of CC$_2$F$_2$ overlaps with a peak at higher energy assigned to CC$_1$ ionization. From the mass spectra, CC$_3$F MPI results in about five times more CC$_1^+$ than MPI of CC$_2$F$_2$ (relative to CF$^+$ yield) which explains the observed difference in intensities for CC$_1^+$ in the energy spectra. No information on ω_e and $\omega_x e$ can be obtained from these data, but the ionization potential for CC$_1$ can be determined to be 8.9 ± 0.2 eV (0.1 eV lower than CF). The only previous determination of the IP of CC$_1$ is by the reaction threshold technique21 which gives an upper limit of 10.6 eV, and on the basis of chemical intuition, a value less than or equal to that for CF would be expected.
The other features in the spectrum which are not given assignments are most likely due to two photon ionization of larger fragments of the parent molecules. The conclusion that can be drawn from the data presented here is that the mechanism of \(\text{CCl}_2\text{F}_2 \) and \(\text{CCl}_3\text{F} \) is photofragmentation of the parent molecule into neutral fragments, followed by two—photon ionization of these fragments. Data on other halocarbons, to be discussed in a future paper, would indicate that this is generally the case in MPI of freons with the ArF laser.

ACKNOWLEDGMENTS

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U. S. Department of Energy under Contract Number W-7405-Eng-48. The laser used in these experiments was borrowed from the San Francisco Laser Center. This material is based on work supported by the National Science Foundation under Grant Number CHE79-16250 awarded to the University of California at Berkeley in collaboration with Stanford University. We would like to thank C. W. Matthews for useful discussions about the CF spectrum.
REFERENCES

20. The Franck-Condon factors calculated for CF $^2\Delta(v'' = 2) \rightarrow CF^+$$^1\Sigma^+$ $(v' = 0,1,2,3,4,5,6)$ are (normalized to $v' = 0$): 1.00, 1.48, 0.22, 0.45, 1.24, 0.16, 0.67. The intensities (corrected for laser power drift) measured for CF$^+$ formed in MPI of CCl$_2$F$_2$ are: 1.00, 1.3 \pm 0.3, 0.2 \pm 0.1, <1.5, 1.6 \pm 0.4, <0.5, 0.7 \pm 0.3. The peaks corresponding to CF$^+$ formed in $v' = 3$ or $v' = 5$ are obscured by peaks due to other ions.

FIGURE CAPTIONS

Fig. 1. Photoelectron kinetic energy spectra for electrons formed by ArF laser multiphoton ionization of CCl$_2$F$_2$ and CCl$_3$F. Assignments are indicated for two-photon ionization of CF and CCl to give CF$^+$ and CCl$^+$ in various vibrational states. Positions for CF$^+$ peaks were calculated using constants given in text. (I.P. = 9.0 eV, $\omega_e = 0.223$ eV, $\omega_e \chi_e = 0.002$ eV.) Positions shown for CCl$^+$ were calculated using an I.P. of 8.9 eV, and $\omega_e = 0.146$ eV, $\omega_e \chi_e = 0.001$ eV.22
Fig. 1
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.