Title
A Neutron Dose Detector with REM Response to 1 GeV

Permalink
https://escholarship.org/uc/item/0k7978wp

Authors
Sun, R.-K.
Krebs, G.F.
Smith, A.R.
et al.

Publication Date
1992-07-02
ENVIRONMENT, HEALTH AND SAFETY DIVISION

To be presented at the ANS/ENS International Meeting, Chicago, IL, November 15-20, 1992, and to be published in the Proceedings

A Neutron Dose Detector with REM Response to 1 GeV

R.K. Sun, G.F. Krebs, A.R. Smith, and H.H. Hsu

July 1992

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California and shall not be used for advertising or product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
A Neutron Dose Detector with REM Response to 1 GeV

R.K. Sun, G.F. Krebs, A.R. Smith
Environment, Health, and Safety Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

and

H.H. Hsu
Los Alamos National Laboratory
University of California
Los Alamos, New Mexico 87545

July 1992

This work was supported by the Exploratory Research & Development Funds of the Lawrence Berkeley Laboratory through the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
A Neutron Dose Detector With REM Response To 1 GeV

R. K. Sun, G. F. Krebs, A. R. Smith

Lawrence Berkeley Laboratory,

H. H. Hsu

Los Alamos National Laboratory

1. Introduction

The limitation of current remmeters, which do not measure neutron dose equivalents above about 15 MeV, is a serious problem at high-energy accelerator facilities, where a much wider range of neutron energies exist. The purpose of this work was to measure the response of a modified Andersson-Braun (A-B) remmeter to neutron energies up to 1 GeV. The modifications to the standard A-B remmeter were based on the experimental results of Pb(n, xn) reactions(1).

2. Experimental Procedure

A diagram of the modified A-B detector is shown in Fig. 1. The modification to the standard A-B detector is shown as a cylindrical layer (the moderator) of lead (instead of polyethylene), part 2 in Fig. 1.

We have carried out preliminary experiments at both the 88" Cyclotron and the Bevalac accelerators located at Lawrence Berkeley Laboratory. The remmeter response was measured at neutron energies of 40 MeV, 400 MeV, and 1050 MeV. Neutrons of 40 MeV were obtained at the 88" Cyclotron by bombarding a Li target with proton projectiles. At the Bevalac 400-MeV neutrons were obtained by bombarding an Al target with Au projectiles while the 1050 MeV neutrons were

Submitted to ANS/ENS International Meeting, 11/15-20/92, Chicago, IL.
obtained by bombarding a polyethylene target with deuteron projectiles. In all cases, the charged particles were swept away with a downstream dipole magnet, leaving behind a pure neutron beam. The 400-MeV and 1050-MeV neutron beams were previously characterized at the Bevalac\(^2\). A comparison between the response to neutrons for the modified and unmodified A-B neutron detectors was carried out.

3. Results

The results for the response of the modified and standard A-B remmeters are expressed as the ratio of the response of the detector with the lead-containing moderator to the detector with polyethylene moderator. The ratios were 6.6 for 400-MeV neutrons and 9.8 for 1050-MeV neutrons. The ratio for the 40-MeV neutrons was found to be 1.8. These ratios are quite close to ratios obtained by Monte Carlo calculations using the LAHET and MCNP codes. The experimental results and theoretical curves are shown in Fig. 2.

Further work will be carried out at energies both above and below those reported in this paper. In the future work, various modifications to the standard A-B remmeter will be carried out, and the responses of these detectors to neutrons will be measured experimentally.

Reference


This work was supported by

the U.S. Department of Energy under Contract # DE-AC03-76SF00098.
Fig. 1 Modified Andersson-Braun Remmeter

Fig. 2 Responses of Modified Andersson-Braun Remmeter