Title
Vasoconstrictory effects of adrenalin on the perfused head of the eel (Anguilla angvilia L.)

Permalink
https://escholarship.org/uc/item/0kh4q9dg

Journal
Comparative Biochemistry and Physiology. Part C, Comparative, 76(1)

ISSN
0306-4492

Authors
Pinto, A
Piomelli, D

Publication Date
1983

DOI
10.1016/0742-8413(83)90065-8

License
CC BY 4.0

Peer reviewed
VASOCONSTRICTORY EFFECTS OF ADRENALIN ON THE PERFUSED HEAD OF THE EEL (ANGUILLA ANGUILLA L.)

A. PINTO and D. PIOMELLI

Institute of Experimental Pharmacology, School of Pharmacy, University of Naples and Zoological Station of Naples, Naples, Italy

(Received 15 February 1983)

Abstract

1. Adrenalin (5.0 x 10^{-5} M) increases gill vascular resistance up to 23.2 ± 6.8% in the isolated and perfused head of the European eel (Anguilla anguilla L.).
2. This vasoactive response is nearly abolished by the ß-adrenergic blocking agent phentolamine mesylate (5.0 x 10^{-4} M), while it is increased by the ß-blocker propranolol (5.0 x 10^{-4} M).
3. From these results it may be inferred that, in our experimental conditions, the major response to the catecholamine is a vasoconstriction mediated via ß-adrenoceptors.

INTRODUCTION

In fish gills are the main junction between the external and internal environment, allowing the achievement of two discrete functions: the exchange of respiratory gases, and the maintenance of osmotic balance. As a result, the control of blood flow through the branchial vascular district must be, at the same time, effective and flexible, capable of adapting, as far as possible, the external conditions to the changes of the external environment (Johansen, 1971; Potts, 1977).

The contribution of catecholamines to gill vessels homeostasis has been extensively investigated, and some of their physiological roles assessed (Wahlquist, 1980). Adrenalin is synthesized in chromaffin tissue in the head kidney and can be released into the circulation by the stimulation of adrenergic sympathetic fibres (Nilsson et al., 1976). A large number of studies show its vasodilatory effect on the ß-adrenergic constrictory one, showed in the systemic circulation (Pettersson and Johansen, 1982).

The presence of adrenoceptors of the ß-type in the branchial vascular smooth muscle is also reported (Wood, 1974; Smith, 1977; Pettersson and Nilsson, 1979), and is suggested to produce vasoconstriction. Besides, a slight increase in vascular resistance has been sometimes reported to precede the stronger and longer lasting dilatation (Wood, 1975; Payan and Matty, 1975), with minor modifications.

The ventral body wall was opened and the heart exposed; heparin (1000 U.I.) was injected into the ventricle and let flow through the gills. The fish was decapitated behind the pectoral fins and a polyethylene catheter inserted into the ventral aorta through the bulbus arteriosus.

The head was put in a plastic box filled with circulating water: during preparation and experiment gills were ventilated with tap water (temp. 16-21°C; pH 6.8; flow 600 ml/min) continuously bubbled with O_2 95% + CO_2 5%.

The perfusion was carried out by means of a peristaltic pump with a steady flow of 3.5 ml/min/100 g fish, resulting in a perfusion pressure close to that reported by Mott (1950).

The isolated and perfused head was prepared according to Payan and Matty (1975), with minor modifications.

The gill resistance was calculated according to Párt et al. (1982) from

\[R_g = \Delta P / Q, \]

where \(R_g \) = gill resistance; \(\Delta P \) = drop in blood pressure through the gills and \(Q \) = perfusion flow (ml/min/100 g of fish). \(\Delta P \) was made equal to ventricular pressure (\(P_v \)), since no systemic counter-pressure was applied in our system. \(P_v \) was calculated according to Párt et al. from

\[P_v = P_s (\text{syst}) + 2/3 P_v (\text{diast}). \]

Experimental protocol

After cannulation, gills were perfused for an equilibration period of about 30 min before experiments were begun. In all experiments the following schedule has been followed: adrenalin (5.0 x 10^{-5} M), 15 min; recovery, 15 min; phentolamine (5.0 x 10^{-3} M) or propranolol (5.0 x 10^{-4} M), 15 min; and perfusion was continued up to 60 min.
Fig. 1. Effects of adrenalin perfusion (5.0 \times 10^{-5} \text{M} \text{ for 15 min}) on branchial vascular resistance of the eel *Anguilla anguilla* L. During the initial period (not shown) the head was perfused with Ringer solution only. Significance for paired comparisons: *P < 0.05, **P < 0.01.

10 min; phentolamine or propranolol plus adrenalin, 10 min.

RESULTS AND DISCUSSION

In our experimental conditions the basal values of gill vascular resistance \((R_g)\) showed marked variation, with a mean value of \(33.7 \pm 7.38\) (\(n = 12\)). \(R_g\) increased by \(27.2 \pm 6.8\) (\(n = 12\)) within the first 5 min of perfusion with \(5.0 \times 10^{-5} \text{M}\) adrenalin (Fig. 1). Later \(R_g\) decreased and established at a value \(30.0 \pm 7.5\) (\(n = 10\)) above the basal level. Previous experiments performed with a lower adrenalin concentration (\(5.0 \times 10^{-4} \text{M}\)) have occasionally shown analogous results, but more frequently, neither vasoconstriction, nor dilatation occurred.

One case differed from all others, resembling the constriction–dilatation pattern already observed by several Authors (see Introduction).

During administration of the \(\alpha\)-blocker phentolamine mesylate (\(5.0 \times 10^{-5} \text{M}\)), the response to adrenalin was almost abolished (Fig. 2A) suggesting an involvement of \(\alpha\)-adrenoceptors in the evocation of the effect. The marked increase in \(R_g\) following perfusion of adrenalin with the \(\beta\)-antagonist propranolol (\(5.0 \times 10^{-4} \text{M} \text{ plus 122\% of the response to adrenalin alone}\) showed an implication of the \(\beta\)-receptors also (Fig. 2B).

These data oppose the major part of the results earlier observed, while agreeing with those obtained by Pärt et al. (1982). Pärt et al., using an experimental system very similar to ours, in the study of rainbow trout (*Salmo gairdneri* Rich.) gills have found an analogous increase in \(R_g\) after administration of adrenalin (\(1.0 \times 10^{-6} \text{M}\)). Discussing the results they have suggested “the time of the year, winter, and the water temperature” (10°C) being an explanation of their data.

It is worthwhile to stress the differences between thermic and seasonal effects: in the former the variation in reactivity would be ascribable to a direct action of the environment, i.e. a change in temperature, while in the latter it would be due to endogenous rhythms, not directly dependent on external influence.

Moen et al. (1981) have found that the systemic \(\alpha\)-response of *S. gairdneri* Rich. is highest at the normal habitat temperature of the fish (5–8°C): this may support the hypothesis of a dependence on temperature of \(\alpha\)- or \(\beta\)-adrenergic prevalence in branchial vascular control.

Some objections might be raised: Pettersson and Johansen (1982) have given one more evidence of the vasodilatory properties of adrenalin in rainbow trout gills, at the temperature of 10°C (season not reported), namely the same used by Pärt et al. (1982) with contrasting results.

One of the classical models of temperature-dependent \(\beta\)-\(\alpha\) conversion has been, in the past years, the adrenoceptor population of frog myocardium (Buckley and Jordan, 1970; Harry, 1972; Kunos and Nickerson, 1976; Nickerson and Kunos, 1977). But this hypothesis has been doubted by a growing series of findings (Stene-Larsen and Helle, 1979; Ask et al., 1981; Ask, 1983). The lacking of a model of temperature-dependent conversion is of importance. On the other hand, the idea of seasonal, temperature-independent variations is sustained by experimental facts.

In several works, Peyraud-Waitzenegger et al., using animals taken at constant temperature (Waitzenegger and Serfaty, 1967; Peyraud-Waitzenegger, 1972; Peyraud-Waitzenegger et al., 1980) have given evidence of season-dependent changes in adrenergic ventilatory control in the carp (*Cyprinus carpio*) and in the eel (*Anguilla anguilla* L.); according to these Authors “L’effet \(\alpha\) caractérise les périodes d’hypoactivité métabolique”, winter and autumn (Peyraud-Waitzenegger, 1972).
Adrenalin on the perfused head of the eel

Fig. 2A.

Fig. 2B.

Fig. 2. Comparison of the vasoactive effects of adrenalin perfusion (5.0 × 10⁻⁵ M for 15 min) alone and in the presence of the α-blocker phentolamine (5.0 × 10⁻³ M) (A) and of the β-blocker propranolol (5.0 × 10⁻⁴ M) (B). Propranolol alone gave an increase in Rs up to 31.7 ± 11.3 (n = 5).
REFERENCES

Table 1. Effects of adrenaline, phenolamine and propranolol

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5'</td>
<td>22±6.8</td>
<td><0.05</td>
<td>94±3.3</td>
<td><0.05</td>
<td><0.01</td>
</tr>
<tr>
<td>10'</td>
<td>30±7.5</td>
<td><0.05</td>
<td>53±4.6</td>
<td><0.05</td>
<td><0.01</td>
</tr>
<tr>
<td>5'</td>
<td>30±7.4</td>
<td><0.05</td>
<td>42±4.2</td>
<td><0.05</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Significance has been calculated by means of the Student's t test for paired data.
