Title
Genetic Control of Methyl Halide Production in Arabidopsis

Permalink
https://escholarship.org/uc/item/0kq0x3hc

Journal
Current Biology, 13(20)

ISSN
0960-9822

Authors
Rhew, RC
Østergaard, L
Saltzman, ES
et al.

Publication Date
2003-10-01

DOI
10.1016/j.cub.2003.09.055

License
CC BY 4.0

Peer reviewed
Genetic Control of Methyl Halide Production in Arabidopsis

Robert C. Rhew,1,4,* Lars Østergaard,2,4,* Eric S. Saltzman,1 and Martin F. Yanofsky2
1Department of Earth System Science
University of California, Irvine
Irvine, California 92697-3100
2Section of Cell and Developmental Biology
University of California, San Diego
La Jolla, California 92093-0116

Summary
Methyl chloride (CH3Cl) and methyl bromide (CH3Br) are the primary carriers of natural chlorine and bromine, respectively, to the stratosphere [1, 2], where they catalyze the destruction of ozone, whereas methyl iodide (CH3I) influences aerosol formation [3] and ozone loss [4, 5] in the boundary layer. CH3Br is also an agricultural pesticide whose use is regulated by international agreement [6]. Despite the economic and environmental importance of these methyl halides, their natural sources and biological production mechanisms are poorly understood. Besides CH3Br fumigation, important sources include oceans, biomass burning, tropical plants, salt marshes, and certain crops and fungi [7]. Here, we demonstrate that the model plant Arabidopsis thaliana produces and emits methyl halides and that the enzyme primarily responsible for the production is encoded by the HARMLESS TO OZONE LAYER (HOL) gene. The encoded protein belongs to a group of methyltransferases capable of catalyzing the S-adenosyl-L-methionine (SAM)-dependent methylation of chloride (Cl−), bromide (Br−), and iodide (I−) to produce methyl halides [8–10]. In mutant plants with the HOL gene disrupted, methyl halide production is largely eliminated. A phylogenetic analysis with the HOL gene suggests that the ability to produce methyl halides is widespread among vascular plants. This approach provides a genetic basis for understanding and predicting patterns of methyl halide production by plants.

Results and Discussion
Arabidopsis thaliana belongs to the Brassicaceae family, of which several members have been shown to emit methyl halides [11, 12]. The genome of Arabidopsis has been sequenced in its entirety, and near-saturation mutant collections are available, thus providing an opportunity to investigate the genetic regulation of methyl halide production in plants. Using the amino acid sequence of a methyl chloride transferase from the salt marsh plant Batis maritima (BmMCT; GenBank accession number AF084829) in a BLAST search of the Arabidopsis thaliana genome, we identified a possible ortholog of BmMCT on chromosome II (At2g43910). The predicted translational product of this gene is 66% identical to BmMCT. Comparison of the identified Arabidopsis thaliana genomic sequence to an mRNA sequence representing this gene (CERES mRNA 24370) revealed the presence of eight exons and seven introns (Figure 1A) with an open reading frame encoding a polypeptide of 227 amino acids (Figure 1B). We have designated the gene HARMLESS TO OZONE LAYER (HOL), based on the expected effect of its loss of function. HOL mRNA was found in all above-ground tissues. However, the expression level in 5-day-old seedlings was considerably higher than in tissues from 4-week-old plants (Figure 1C). For the 4-week-old plants, HOL mRNA levels in reproductive tissue (flowers and green siliques) were lower than in vegetative tissue. HOL is not a single-copy gene, however. Analysis of the Arabidopsis genome sequence revealed the existence of a gene whose protein product is 83% identical to HOL. This gene (At2g43920), which is located immediately adjacent to HOL, is expressed at a much lower level than HOL in the tissues tested (data not shown).

In order to test the loss of function of the HOL gene, an insertion line with a T-DNA inserted 160 nucleotides into intron 2 was identified in the SALK T-DNA collection (http://signal.salk.edu/cgi-bin/tdnaexpress). Homozygous mutants (hol−1) were isolated from a segregating T2 population, and only one insertion was detected according to a Southern blot analysis (see Figure S1 in the Supplemental Data available with this article online). A Northern blot analysis demonstrated that the presence of full-length HOL mRNA was dramatically reduced in homozygous hol−1 plants compared to Arabidopsis plants of ecotype Columbia 0 (ColO) (Figure 1D). However, the mutant plants showed no obvious growth abnormalities.

We investigated the importance of HOL for methyl halide production in Arabidopsis thaliana by comparing methyl halide emissions of wild-type with those of hol−1 plants. We quantified the methyl halide emissions from juvenile (10–17 days after germination) and adult (3–4 weeks after germination) Arabidopsis plants by sealing whole plants inside glass incubation chambers and measuring the headspace concentration over time (see the Supplemental Data). Juvenile plants (100–300 seedlings) were grown in agar in small glass jars, and each jar of juvenile plants was incubated separately during flux measurements. Adult plants were extracted from the potted soil in which they were grown, and their roots were immersed in deionized water or dilute halide solutions during incubations. These incubations typically included five adult plants exposed to consecutive stepwise increases of halide concentrations. Halide concentrations in the agar (10–15 μmol Cl−, 0.03–0.3 μmol Br−, and 5–12 nmol I− per gram of agar) and the solution (25–50 μmol Cl−, 3–7 μmol Br−, and 3–7 nmol I− per milliliter of solution) were purposefully low in order to minimize competitive inhibition, to allow simultaneous analyses of all three methyl halides, and to expose the
plants to halide levels that could be found under natural conditions.

Wild-type Arabidopsis juvenile plants and adult plants produce and emit all three methyl halides with fluxes that are influenced by the concentrations of halides in the substrate (Figure 2A, black bars). Juvenile plants have large emissions even at the low halide concentrations found in unamended agar. Overall production rates showed relative emissions of CH$_3$I >> CH$_3$Cl >> CH$_3$Br. For the experiments on adult plants, which bromide was enhanced and iodide was reduced relative to the agar in the juvenile experiments, CH$_3$Br emissions were greater than both CH$_3$I and CH$_3$Cl. Average production rates were linear with respect to the available halide concentration. CH$_3$Cl showed production even when incubated in deionized water for over an hour, presumably due to residual chloride in the plant.

In contrast to wild-type plants, hol-1 mutants have dramatically lower methyl halide emissions (Figure 2A, white bars). For the experiments with juvenile plants grown at the same time and under the same conditions, hol-1 mutants showed average emissions of only 15% CH$_3$I, 4% CH$_3$Br, and 1% CH$_3$I compared to wild-type. The adult hol-1 plants showed an even more striking loss of activity, with emissions less than 1% of wild-type. The boxes indicate ems with noncoding (white) and coding (gray) sequence. The black triangles point to the location of the T-DNA insertion in the hol-1 mutant and the Ds insertion in the hol-2 mutant. (A) Genomic organization of the HOL gene. (B) The amino acid sequence of HOL. The SAM binding methyltransferase domain is underlined. (C) Northern blot of 10 µg total RNA from 5-day-old Col0 seedlings (S), rosette leaves (RL), cauline leaves (CL), stem tissue (St), inflorescence tissue (I), flowers (F), and green siliques (GS). Individual tissue was collected from 4-week-old Arabidopsis thaliana plants (ecotype Col0). An ethidium bromide-stained gel is shown below. (D) Northern blot of 10 µg total RNA from 5-day-old seedlings from Col0 and hol-1 mutants. The probe was specific to 453 nucleotides of the mRNA downstream of the T-DNA insertion site. An ethidium bromide-stained gel is shown below.

Figure 1. Organization and Regulation of the HOL Gene on Arabidopsis Chromosome II

The order of preference for halide methylation may be assessed by normalizing the observed emission rates of methyl halides (CH$_3$X) to the concentrations of the corresponding halide (X) in the substrate for each incubation experiment. All wild-type plants strongly favor the methylation of I$^-$ to Br$^-$ to Cl$^-$ (Figure 2B). Adult plants showed a relative methylation preference ratio for I$^-$:Br$^-$:Cl$^-$ of roughly 10,000:50:1. Juvenile plants showed a ratio of roughly 40,000:9:1.

This order of halide preference is also exhibited in juvenile plants of another ecotype of Arabidopsis thaliana (Landsberg erecta) and is also evident when normalizing fluxes to the halide concentrations within adult plant tissue itself (see Figure S2 in the Supplemental Data). This preferential methylation order of I$^-$ >> Br$^-$ >> Cl$^-$ is similar to the analogous SAM-dependent methyltransferases in the wood-rot fungus Phellinus pomaceus [10], the alga Endocladiadum muricat [8], and cabbage (Brassica oleracea) [9, 11].

The HOL protein and the thiol methyltransferase (TMT) identified in Brassica oleracea [15, 16] share a high sequence similarity, and both are most highly expressed at early stages of development (Figure 1C), suggesting that they serve the same biological function. TMT putatively plays a role in the metabolism of glucosinolates, sulfur-containing secondary metabolites found in the tissues of all members of Brassicaceae. Upon tissue damage, glucosinolates hydrolyze in the presence of myrosinases to produce reactive thiols that act as deterrents to herbivory [17]. TMT methylates the products of glucosinolate degradation, creating volatile sulfur deriv-
Methyl Halide Production in Arabidopsis

Figure 2. Effect of hol-1 Mutation, Plant Life Stage, and Substrate Halide Concentrations on Methyl Halide Emissions

(A) Molar fluxes of CH$_3$Cl, CH$_3$Br, and CH$_3$I from wild-type Col0 and hol-1 mutant plants on a fresh weight basis. Emissions of the methyl halides are dramatically decreased between the Col0 wild-type (black bars) and the mutant (white bars) grown and incubated under the same conditions. (Left panels) Each bar represents four flux measurements from two independent sets of juvenile plants. The numbers represent the mean measured halide concentration of the substrate, reported in μmol/g agar for Cl$^-$ and Br$^-$ and in nmol/g agar for I$^-$(SD = 14%, 40%, and 34%, respectively). (Right panels) Each bar represents four flux measurements from two independent sets of adult plants. The numbers represent the mean measured halide concentration of the incubation solution (SD = 26%, 10%, and 10% for Cl$^-$, Br$^-$, and I$^-$, respectively).

(B) Halide-normalized fluxes demonstrate the preferential uptake of iodide for the wild-type juvenile (n = 8) and adult (n = 7) plants. This trend is also generally followed in the hol-1 juvenile (n = 8) and adult (n = 8) plants, although overall emission rates are much lower. The full range, down to the detection limit (note logarithmic scale), is shown.

Addition of NaBr to a set of wild-type juvenile plants caused more than a thousand-fold increase in CH$_3$Br emissions on the following day, but only a 20%–25% decrease in CH$_3$Cl and CH$_3$I. The subsequent addition of NaSCN caused a >95% decrease in all methyl halide emissions. This decrease suggests that the enzyme preferentially methylated thiocyanate over the halides, and this finding is consistent with results from B. oleracea [18]. In contrast, the unamended jars of wild-type juvenile plants showed stable rates of methyl halide emissions over the course of the week.

Methyl halide emissions from the hol-1 mutant juvenile plants were initially less than 5% of those from wild-type (Figure 3). CH$_3$Br emissions clearly increased following the addition of NaBr. This marked increase is similar to the wild-type experiment, although the hol-1 emission rates were still significantly lower than the wild-type emission rates. However, the addition of NaSCN did not dramatically diminish the emission rates of the methyl halides, suggesting that it was not an effective inhibitor in the mutant plants.

The identification of the HOL gene and its integration into a phylogenetic map by using its encoded amino acid sequence can provide insight into the taxonomic diversity of methyl halide production by terrestrial plants. By searching the TIGR database (http://www.tigr.org), we identified a total of eight homologs of the
We propose that this second enzyme may be responsible for the small amount of remaining methyl halide emissions. Our work further suggests that while overexpression of the TMT gene in Brassica oleracea plants may increase the detoxification of thiocyanate compounds and subsequently enhance food quality [16], it may also result in increased methyl halide emissions with unknown implications for the ozone chemistry of the atmosphere.

Supplemental Data
Supplemental Data including the Experimental Procedures, three figures, and associated references are available at http://www.current-biology.com/cgi/content/full/13/20/1809/DC1/.

Acknowledgments
We thank B. Igic for help with the phylogenetic tree, M. Walser for halide measurements, M. Aydin for GC-MS and standards development, and S. Manley and R. Cicerone for equipment use and encouragement. L.O. and M.F.Y. were supported in part by a grant from the National Science Foundation. R.C.R. was supported by the National Oceanic and Atmospheric Administration Postdoctoral Program in Climate and Global Change, administered by the University Corporation for Atmospheric Research.

References

Figure 4. Phylogenetic Analysis of HOL/TMT Genes
Bootstrap values from 100 replicates are shown above each branch of the neighboring tree. Sequences in the tree are from Arabidopsis thaliana (At2g43920), Batis maritima (BmMCT; GenBank Accession Number AF109128), Brassica oleracea (BoTMT1 and BoTMT2; Accession Numbers AF387791 and AF387792, respectively), Gossypium hirsutum (GhHOL; Accession Number A731598), Hordeum vulgare (HvHOL; Accession Number TC102403), Oryza sativa (OsHOL; Accession Number AC092852), and Zea mays (ZmHOL; Accession Number BQ67926).