Lawrence Berkeley National Laboratory
Recent Work

Title
Reducibility and Thermal Scaling of Charge Distributions in Multifragmentation

Permalink
https://escholarship.org/uc/item/0kr9k69x

Journal
Physical Review Letters, 75(2)

Authors
Phair, L.
Tso, K.
Ghetti, R.
et al.

Publication Date
1995-01-18
Submitted to Physical Review Letters

Reducibility and Thermal Scaling of Charge Distributions in Multifragmentation

January 1995
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Reducibility & Thermal Scaling of Charge Distributions in Multifragmentation

L. Phair, K. Tso, R. Ghetti, G.J. Wozniak and L.G. Moretto

Nuclear Science Division, Lawrence Berkeley Laboratory
University of California, Berkeley, CA 94720, USA

National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824

January 1995

This work was supported by the Director, Office of Energy Research Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098
Abstract

A strong thermal signature is found in the charge distributions associated with multifragmentation from the reaction $^{36}\text{Ar}+^{197}\text{Au}$ at $E/A=110$ MeV. The n-fold charge distributions are reducible to the 1-fold charge distributions through a simple scaling that is dictated by fold number and charge conservation.
Historically the charge (mass) distribution has played and still plays a very important role in multifragmentation. Since the inception of the studies on this subject, the near power-law shape of the charge and mass distributions was considered an indication of criticality for the hot nuclear fluid produced in light ion and heavy ion collisions [1,2]. More modern studies still infer critical behavior from the moments of the charge distribution [3-8]. Furthermore, a charge distribution is readily predicted by most models and easily testable.

Recently, it has been experimentally observed in 36Ar+197Au reactions that for any value of the transverse energy E_t, the n-fragment emission probability P_n is reducible to the one-fragment emission probability p through a binomial distribution [9]

$$ P_n^m = \frac{m!}{n!(m-n)!} p^n(1-p)^{m-n}. \quad (1) $$

This empirical evidence indicates that multifragmentation can be thought of as a special combination of nearly independent fragment emissions. The binomial combination of the elementary probabilities points to a combinatorial structure associated with a time-like or space-like one-dimensional sequence. It was also found that the log of such one-fragment emission probabilities (log p) plotted vs $1/\sqrt{E_t}$ (Arrhenius plot) gives a remarkably straight line. This linear dependence is strongly suggestive of a thermal nature for p,

$$ p = e^{-B/T} \quad (2) $$

under the assumption that the temperature $T \propto \sqrt{E^*}$ where E^* is the excitation energy. These observations were made with data integrated over a broad range of fragment atomic numbers ($3 \leq Z \leq 20$). The difficulty of a thermal interpretation of the probability p averaged over Z was tentatively resolved by observing that if B is weakly (polynomial) dependent on Z then

$$ p = \int e^{-\frac{1}{2}(B_0+az^2)} dZ = \left(\frac{T}{a} \right)^{1/2} e^{-\frac{E^*}{T}} \quad (3) $$

and therefore p retains the form of Eq. (2).

These aspects of reducibility and thermal scaling in the integrated fragment emission probabilities lead naturally to the question: Is the charge distribution itself reducible and
scalable? In particular, what is the charge distribution form that satisfies the condition of reducibility and of thermal dependence? In what follows we will show that experimental charge distributions do, in fact, show most interesting reducibility and thermal scaling properties.

Let us first consider the aspect of reducibility as it applies to the charge distributions. In its broadest form, reducibility demands that the probability \(p(Z) \), from which an event of \(n \) fragments is generated by \(m \) trials, is the same at every step of extraction. The consequence of this extreme reducibility is straightforward: the charge distribution for the one-fold events is the same as that for the \(n \)-fold events and equal to the singles distributions, i.e.:

\[
P(1)(Z) = P(n)(Z) = P_{\text{singles}}(Z) = p(Z).
\]

(4)

We now consider the consequences of the thermal dependence of \(p \) [9] on the charge distributions. If the one-fold = \(n \)-fold = singles distributions is thermal, then

\[
P(Z) \propto e^{-\frac{B(Z)}{T}}
\]

(5)

or \(T \ln P(Z) \propto -B(Z) \). This suggests that, under the usual assumption \(E_t \propto E^* \) [9], the function

\[
\sqrt{E_t} \ln P(Z) = D(Z)
\]

(6)

should be independent of \(E_t \).

In the \(^{36}\text{Ar}+^{197}\text{Au}\) reaction considered here, as in other reactions [10,11], the charge distributions are empirically found to be nearly exponential functions of \(Z \)

\[
P_n(Z) \propto e^{-\alpha_n Z}
\]

(7)

as shown in Fig. 1. In light of the above considerations, we would expect for \(\alpha_n \) the following simple dependence

\[
\alpha_n \propto \frac{1}{T} \propto \frac{1}{\sqrt{E_t}}
\]

(8)
for all folds \(n \). Thus a plot of \(\alpha_n \) vs \(1/\sqrt{E_t} \) should give nearly straight lines. This is shown in Fig. 2 for \(^{36}\text{Ar}+^{197}\text{Au} \) at \(E/A=110 \) MeV.

The expectation of thermal scaling appears to be met quite satisfactorily. For each value of \(n \) the exponent \(\alpha_n \) shows the linear dependence on \(1/\sqrt{E_t} \) anticipated in Eq. (8). On the other hand, the extreme reducibility condition demanded by Eq. (4), namely that \(\alpha_1 = \alpha_2 = \ldots = \alpha_n = \alpha \), is not met. Rather than collapsing on a single straight line, the values of \(\alpha_n \) for the different fragment multiplicities are offset one with respect to another by what appears to be a constant quantity.

In fact, one can fit all of the data remarkably well, assuming for \(\alpha_n \) the form:

\[
\alpha_n = \frac{K'}{\sqrt{E_t}} + nc
\]

which implies:

\[
\alpha_n = \frac{K}{T} + nc
\]

or more generally, for the \(Z \) distribution:

\[
\ln P_n(Z) \propto e^{-\frac{F(Z)}{F}} - ncZ.
\]

Thus, we expect a more general reducibility expression for the charge distribution of any form to be:

\[
[\ln P_n(Z) + ncZ] \sqrt{E_t} = F(Z)
\]

for all values of \(n \) and \(E_t \). This equation indicates that it should be possible to reduce the charge distributions associated with any intermediate mass fragment multiplicity to the charge distribution of the singles. As a demonstration of this reducibility, we have compared \(P_n(Z) \) and \(F(Z) \) in Figures 1 and 3. Fig. 1 compares three charge distributions for different cuts on \(E_t \) and \(n \); their slopes are clearly different. The reduced quantity \(F(Z) \), on the other hand, collapses to a single line in Fig. 3.
What is the origin of the regular offset that separates the curves in Fig. 2? The general form of Eq. (11) suggests the presence of an entropy term that does not depend explicitly on temperature. The general expression for the free energy (in terms of enthalpy \(H\), temperature \(T\) and entropy \(S\))

\[
\Delta G = \Delta H(Z) - T \Delta S(Z)
\]

leads to the distribution

\[
P(Z) \propto e^{-\frac{\Delta H(Z)}{T} + \Delta S}.
\]

Typically, \(\Delta S\) is of topological or combinatorial origin. In our specific case it may point to an asymptotic combinatorial structure of the multifragmentation process in the high temperature limit. As an example, we consider the Euler problem of an integer to be written as the sum of smaller integers, and calculate the resulting integer distribution. Specifically, let us consider an integer \(Z_0\) to be broken into \(n\) pieces. Let \(n_Z\) be the number of pieces of size \(Z\). The most likely value of \(n_Z\) can be obtained by extremization of the function [12]

\[
e^{-I} = e^{\sum [n_z \ln n_z - n_z] + K \sum n_z Z + \gamma \sum n_z}
\]

where the Lagrange multipliers \(K\) and \(\gamma\) are associated with the constraints

\[
\sum n_z Z = Z_0; \sum n_z = n.
\]

From the extremization we obtain

\[
\frac{\partial I}{\partial n_z} = \ln n_z + KZ + \gamma = 0
\]

or

\[
n_z = e^{-KZ - \gamma}.
\]

The constraints now read
This expression has the correct asymptotic structure for \(T \to \infty \) required by Eq. (11). The significance of this form is transparent: First, the overall scale for the fragment size is set by the total charge \(Z_0 \). Second, for a specific multiplicity \(n \), the scale is reduced by a factor \(n \) to the value \(Z_0/n \).

Thus the offset introduced in Eq. (11) with increasing the multiplicity \(n \) may just be due to this scale reduction. If this is so, the quantity \(c \) in Eq. (11) takes the meaning \(c = 1/Z_0 \). The empirical value from Fig. 2 is \(c \approx 0.016 \) which corresponds to a value of \(Z_0 \approx 60 \) which is quite reasonable for the source size.

The implications of the experimental evidence presented above are far reaching. On the one hand, the thermal features observed in the \(n \)-fragment emission probabilities for the \(^{36}\text{Ar}+^{197}\text{Au} \) reaction [9] extend consistently to the charge distributions and strengthen the hypothesis of phase space dominance in multifragmentation. On the other hand, the reducibility of the \(n \)-fold-event charge distributions to that of the singles distribution highlights the near independence of individual fragment emission, limited only by the constraint of charge conservation.

In summary, we have found for multifragmentation produced in the \(^{36}\text{Ar}+^{197}\text{Au} \) reaction at \(E/A=110 \text{ MeV} \):

1) strong evidence for a thermal scaling of the \(Z \)-distributions,

2) reducibility of the \(n \)-fold distributions to the 1-fold distributions through Eq. (11).

3) The structure of the reducibility equation is essentially given by a simple rescaling associated with the multiplicity and the source size.
This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the US Department of Energy, under contract DE-AC03-76SF00098 and by the National Science Foundation under Grant Nos. PHY-8913815, PHY-90117077, and PHY-9214992.

*Present address: Department of Chemistry, Indiana University, Bloomington, IN 47405
†Present address: Chalk River Laboratories, Chalk River, Ontario K0J 1J0, Canada
‡Present address: Instituto de Fisica, Universidade de Sao Paulo, C.P. 20516, CEP 01498, Sao Paulo, Brazil
§Present address: Lawrence Berkeley Laboratory, Berkeley, CA 94720
‖Present address: National Laboratory for High Energy Physics, 1-1 Oho, Tsukuba, Ibaraki 305, Japan
¶Present address: Physics Department, Hope College, Holland, MI 49423
**Present address: Brookhaven National Laboratory, Upton, NY 19973
REFERENCES

FIGURES

FIG. 1. The n-fold charge distributions $P_n(Z)$ for intermediate mass fragments (IMF: $3 \leq Z \leq 20$) are plotted for the indicated cuts on transverse energy E_t and IMF multiplicity n. The width of the cuts ΔE_t is 37.5 MeV. The solid lines are exponential fits over the range $Z=4-20$.

FIG. 2. The exponential fit parameter α_n (from fits to the charge distributions, see Eq. (7)) is plotted as a function of $1/\sqrt{E_t}$. The solid lines are a fit to the values of α_n using Eq. (9).

FIG. 3. The “reduced” charge distributions (see Eq. (12)), are plotted for the same cuts on E_t and n as Fig. 1. The different data sets are normalized at $Z=6$. The value of $c=0.016$ is the spacing between the curves shown in Fig. 2.
36Ar+197Au, $E/A=110$ MeV

$P_n(Z)$

E_t(MeV) =
- 400, $n=4$
- 650, $n=3$
- 900, $n=2$
$^{36}\text{Ar} + ^{197}\text{Au}$, $E/A = 110$ MeV

α_n

$E_t^{-1/2}$ (MeV$^{-1/2}$)

Fig. 2
$^{36}\text{Ar} + ^{197}\text{Au}, \text{E/A}=110\ \text{MeV}$

$\ln(P_n(Z)) + c n Z \sqrt{E_t}$

- $E_t=400\ \text{MeV}, n=4$
- $E_t=650\ \text{MeV}, n=3$
- $E_t=900\ \text{MeV}, n=2$
- $c=0.016$

Fig. 3