EFFECTS OF THYROXINE AND KSCN ON CAPACITY OF RAT THYROID GLAND TO ACCUMULATE ASTATINE211

C. J. Shellabarger, Patricia W. Durbin, Marshall W. Farrott

and Joseph J. Hamilton

November 1954

Printed for the U. S. Atomic Energy Commission
EFFECTS OF THYROIDAL AND KNOB ON CAPACITY OF RAT THYROID

TO ACCUMULATE ASTATINE211

C. J. Shollabarger**, Patricia W. Durbin, Marshall W. Parrott
and Joseph O. Hamilton

Nov., 1954

From Division of Medical Physics, Experimental Radiology and Medicine,
Crocker Laboratory, University of California, Berkeley and San Francisco.

The discovery and production of Element 85, astatine211 (1) was closely followed by studies of the thyroidal accumulation of this, the heaviest of the halogen elements (2). It has been clearly established that the thyroid glands of rats, guinea pigs, monkeys, and man selectively concentrate the 7.3 hour isotope, At211, to a degree which is similar to, but lower than that of I131 (2, 3, 4, 5, 6). It has been further established that the thyroid stimulating hormone (TSH) increases while iodide decreases the thyroidal accumulation of both At211 and I131 (2, 3). Two recent reports indicate, however, that the thiouracil type of anti-thyroid compound enhances the thyroidal uptake of At211 in rats in contrast to lowering the I131 uptake (4, 6). Since the mechanism of the thiouracil induced enhancement of At211

* This work was performed under contract of the University of California under the U. S. Atomic Energy Commission.

** Present address, Brookhaven National Laboratory, Upton, Long Island, New York.
uptake has not been satisfactorily understood or explained, it seemed
of interest to study the effects of other classes of anti-thyroid compounds
upon the capacity of the thyroid gland to accumulate 211At. It is the
purpose of this paper to present data which suggest that depressed thyroid
function, as produced by the administration of exogenous thyroxine, results
in a lowered thyroidal accumulation of both 211At and 131I, that thiocyanate
depresses the thyroidal accumulation of 211At and that thiocyanate apparently
discharges 211At from the thyroid gland.

Methods. The animals used in these studies were young female Sprague-
Dawley rats that had been maintained for at least 2 weeks after receipt.
from the dealer on tap water and a pelleted stock diet*** which is general
use throughout the University of California Radiation Laboratory. Both
food and water were given ad lib. Food was withdrawn following the intra-
venous administration of either 211At or 131I. The 211At was prepared
by a modification of the method described by Garrison et al (7). Following

*** This diet is similar in composition to "Diet 14" developed by the
University of California Institute of Experimental Biology and has been
found to contain 2.5 µg of iodine per gram.

† Processed, carrier-free 131I was obtained from Oak Ridge National
Laboratory, Oak Ridge, Tennessee.
pretreatment with either thyroxine or KSCN and the administration of the isotopes, the animals were sacrificed with chloroform at intervals of from 1 to 18 hours. The thyroid glands were dissected and weighed to the nearest 0.2 mg on a torsion balance. The x-ray activity of the 211At or the γ-ray activity of the 131I were measured with a NaI-TlI scintillating crystal gamma counter which has been described elsewhere (3).

Thyroxine was given subcutaneously in a series of 3 daily injections at a level of 230 mcg/kg/injection in a volume of 0.1 ml of isotonic saline. The last injection of thyroxine was given 4 hours before the administration of the radiologens. An equal number of rats received daily injections of a similar volume of isotonic saline and served as controls. One-half of the thyroxine treated group received 30 mc of 211At and the other half, 10 mc of 131I. The same injected control group was divided and received the same amounts of 211At or 131I as above. The number of animals in each group is shown in Table I.

Potassium thiocyanate was given subcutaneously at a level of 80 mg/kg/injection in a volume of 0.2 ml. Each rat received 20 mc of 211At. The number of rats in each group, the time schedule and the number of KSCN

†† were crystalline L-thyroxine (lotbo), 100 mg/ml, dissolved in 182 ml of 0.065 M HCl, the isotonic saline volume of 0.1 ml was adjusted to 8.5.
injections and the interval between the administration of the At211 and the sacrifice of the animals is shown in Table II.

Results. Thyroxine. The results of 3 daily subcutaneous injections of thyroxine (230 μg/kg/day) on the 18 hour thyroidal uptake of I131 or At211, body weight, and thyroid weight are presented in Table I. The thyroxine dosage was sufficient to depress the growth rate as measured by body weight to a statistically significant degree ($P<0.01$), but did not appear to affect thyroid weight. The thyroxine dosage depressed the thyroidal accumulation of both I131 and At211 below that of non-thyroxine treated control rats. It should be noted that the thyroid uptake values for both At211 and I131 are somewhat low. This is presumably due to the presence of a relatively large amount of stable iodine in the diet employed.

KSCN. Table II shows the accumulation of At211 by the thyroid gland of the rat 1, 4, and 18 hours following its intravenous injection with and without the administration of KSCN. A subcutaneous injection of 20 mg of KSCN 1.5 hours before At211 injection when the rats were sacrificed at either 1 or 4 hours after the administration of At211 resulted in a lower thyroidal accumulation of At211 as compared to the controls. Rats that received 2 KSCN injections, 1.5 hours before the At211 was given and
another KSCN injection 14 hours later with an interval between At211
administration and sacrifice of 18 hours, had lower thyroid At211 values
than the controls. When the interval between the administration of At211
and sacrifice was 18 hours, a single injection of KSCN 1.5 hours before
sacrifice also produced lower thyroid accumulation of At211.

Discussion. It has been clearly established that thyroid hormone
acts to depress thyroid function by inhibiting the production of TSH by
the anterior pituitary (8). In this experiment, the administration of
relatively large amounts of thyroxine apparently inhibited pituitary
TSH production which, in turn, depressed thyroid function as measured by
the decreased thyroidal accumulation of both At211 and 131I. These findings
are in agreement with the previous studies by Hamilton and Soley (1) that
exogenous TSH increased the thyroidal uptake of both At211 and 131I, and
further indicate that the thyroidal accumulation of At211 is under pituitary
control as is the thyroidal accumulation of 131I.

It has been demonstrated that thiocyanate inhibits the collection of
iodide by the thyroid gland (9). It seems reasonable to interpret the
present finding of a lowered thyroidal uptake of At211 when thiocyanate
was given prior to At211 administration to a similar mechanism; that is,
thiocyanate interferes with the capacity of the thyroid gland to concentrate astatide (At⁻).

What happens to the astatide after it is collected by the thyroid gland is more difficult to understand. In the case of I^{131}, iodide is presumably oxidized to iodine and this is organically bound (10).

Thiouracil blocks the organic binding of iodine, and this is reflected by a lower I^{131} content of the thyroid gland. However, both thiouracil and propyl thiouracil have been shown to increase the accumulation of At^{211} by the thyroid gland (4,6). These results have indicated that the behavior of the thyroid toward At^{211} and I^{131} is not always similar. This is not surprising since the chemistry of astatine and iodine differ in many respects (11). It has been shown that thiocyanate administration after the organic binding of I^{131} discharges little or no I^{131} (9). Since in the present experiment approximately 50% of the At^{211} was discharged when KSCN was given 1.5 hours before an 18 hour At^{211} uptake, it is apparent that the At^{211} accumulated by the thyroid is not organically bound in a manner that is strictly comparable to the organic binding of I^{131}.

Summary. The administration of thyroxine to the intact female Sprague-Dawley rat resulted in a lowered thyroidal accumulation of both
At\(^{211}\) and \(^{131}\)I. Since it is known that thyroxine inhibits the production of TSH by the pituitary gland, it is suggested that a reduced pituitary function resulted in a reduced thyroidal accumulation of both halogens. It is further indicated that the thyroidal accumulation of At\(^{211}\) is under pituitary control.

It has been demonstrated that thiocyanate blocks the thyroidal accumulation of astatide, and that since thiocyanate can discharge At\(^{211}\) from the thyroid gland, At\(^{211}\) probably is not organically bound in a manner similar to the organic binding of \(^{131}\)I.

Acknowledgements. Authors wish to extend sincere thanks to Mr. O.B. Rossi and the staff of the 60-Inch Cyclotron who were responsible for the production of the astatine, to Miss Margaret Gee, Mrs. Marilyn Williams, Mrs. Ruth Newman, and Miss Kylan Jeung who gave technical assistance and to Miss Catherine Sjoblom who prepared the manuscript.
Table I. Effect of 8 Daily Subcutaneous Injections of Thyroxine (230 µg/kg/day) on 18 hour Thyroidal Uptake of 131I or 211At, Body Weight and Thyroid Weight of 55 day old Female Sprague-Dawley Rats.

Last Thyroxine Injection Given 4 Hours Before IV Administration of Isotope

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. Of Rats</th>
<th>Mean Body Wt. Beginning g</th>
<th>Mean Body Wt. at Sacrifice g</th>
<th>Mean Thyroid Wt. mg</th>
<th>Mean ± St.E. Thyroid uptake % of admin. isotope</th>
<th>Mean ± St. E Thyroid conc. % isotope/g wet tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroxine + 131I</td>
<td>8</td>
<td>121</td>
<td>133</td>
<td>9.8</td>
<td>$0.73 ± 0.06$</td>
<td>$75.4 ± 6.6$</td>
</tr>
<tr>
<td>Control + 131I</td>
<td>10</td>
<td>124</td>
<td>148</td>
<td>12.3</td>
<td>$6.00 ± 0.51$</td>
<td>$502 ± 46$</td>
</tr>
<tr>
<td>Thyroxine + 211At</td>
<td>10</td>
<td>114</td>
<td>124</td>
<td>9.6</td>
<td>$0.068 ± 0.001$</td>
<td>$6.2 ± 4.9$</td>
</tr>
<tr>
<td>Control + 211At</td>
<td>9</td>
<td>119</td>
<td>141</td>
<td>9.7</td>
<td>$0.305 ± 0.01$</td>
<td>$32.0 ± 4.3$</td>
</tr>
</tbody>
</table>

When mean value is underlined, this indicates that it was tested against the mean immediately below by the t-test (12) and the P value was beyond the 1% level of confidence.
Table II. Effects of a Single or Double Subcutaneous Injection of KSCN on Thyroidal Uptake of 211At in 130 day old Female Sprague-Dawley Rats.

<table>
<thead>
<tr>
<th>Interval between 211At IV Injection and sacrifice hr</th>
<th>Interval between KSCN Injection and sacrifice hr</th>
<th>No. of Rats</th>
<th>Mean Body Wt. g</th>
<th>Mean Thyroid Wt. mg</th>
<th>Mean \pm S.E. Thyroid uptake % of 211At administrated</th>
<th>Mean \pm S.E. Thyroid C: % 211At/g wet tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>5</td>
<td>252</td>
<td>20.5</td>
<td>0.31 ± 0.02</td>
<td>15.60 ± 1.2</td>
</tr>
<tr>
<td>1</td>
<td>2.5</td>
<td>5</td>
<td>254</td>
<td>20.3</td>
<td>0.07 ± 0.01</td>
<td>3.39 ± 0.1</td>
</tr>
<tr>
<td>4</td>
<td>none</td>
<td>5</td>
<td>246</td>
<td>16.8</td>
<td>0.32 ± 0.03</td>
<td>18.95 ± 1.2</td>
</tr>
<tr>
<td>4</td>
<td>5.5</td>
<td>5</td>
<td>245</td>
<td>16.7</td>
<td>0.10 ± 0.01</td>
<td>5.35 ± 0.4</td>
</tr>
<tr>
<td>18</td>
<td>none</td>
<td>6</td>
<td>248</td>
<td>19.9</td>
<td>0.40 ± 0.06</td>
<td>20.00 ± 2.1</td>
</tr>
<tr>
<td>18</td>
<td>19.5</td>
<td>6</td>
<td>244</td>
<td>18.8</td>
<td>0.45 ± 0.08</td>
<td>23.08 ± 3.3</td>
</tr>
<tr>
<td>18</td>
<td>19.5 - 5.5</td>
<td>6</td>
<td>255</td>
<td>18.4</td>
<td>0.16 ± 0.02</td>
<td>8.67 ± 1.0</td>
</tr>
<tr>
<td>18</td>
<td>1.5</td>
<td>6</td>
<td>248</td>
<td>21.0</td>
<td>0.22 ± 0.02</td>
<td>10.37 ± 1.1</td>
</tr>
</tbody>
</table>

When mean value is underlined this indicates that it was tested against the mean of the control non-KSCN injected group of the same interval between 211At injection and sacrifice (12) and the P value was beyond the 1% level of confidence.