EFFECTS OF METAL-SUPPORT INTERACTIONS ON THE SYNTHESIS OF METHANOL OVER PALLADIUM

Yu. A. Ryndin, R.F. Hicks, A.T. Bell, and Yu. I. Yermakov

April 1980
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Effects of Metal-Support Interactions on the Synthesis of Methanol over Palladium

by

Yu. A. Ryndin†, R. F. Hicks, and A. T. Bell
Materials and Molecular Research Division
Lawrence Berkeley Laboratory

and

Department of Chemical Engineering
University of California, Berkeley, California 94720

and

Yu. I. Yermakov
Institute of Catalysis
Novosibirsk 630090, U.S.S.R.

†Permanent address: Institute of Catalysis
Novosibirsk 630090, U.S.S.R.

Submitted to
Journal of Catalysis
ABSTRACT

The synthesis of methanol and other products from CO and H₂ was studied over Pd catalysts prepared by adsorption of Pd(π-C₃H₅)₂ on MgO, ZnO, La₂O₃, γ-Al₂O₃, SiO₂, TiO₂, and ZrO₂ as well as over a SiO₂-supported Pd catalyst prepared from PdCl₂ and Pd black. Both the activity and selectivity of Pd were affected strongly by the nature of the support and the composition of the Pd precursor. The specific activity for methanol synthesis decreased in the order Pd/La₂O₃ >> Pd/SiO₂ [derived from PdCl₂] > Pd/ZrO₂ > Pd/ZnO ≈ Pd/MgO > PdTiO₂ > Pd/Al₂O₃ ≈ Pd/SiO₂ [derived from Pd(π-C₃H₅)₂] >> Pd black while the specific activity for hydrocarbon synthesis decreased in the order Pd/TiO₂ ~ Pd/ZrO₂ > Pd/Al₂O₃ > Pd/SiO₂ [derived from PdCl₂] ~ Pd/SiO₂ [derived from Pd(π-C₃H₅)₂] ~ Pd black >> Pd/MgO > Pd/ZnO. Dimethyl ether production was observed over four of the catalysts and the activity for formation of this product decreased in the order Pd/Al₂O₃ >> Pd/TiO₂ >> Pd/MgO ≈ Pd/ZrO₂. The effects of support composition on the catalytic properties of Pd are discussed in the light of current ideas concerning metal-support interactions and the acid-base properties of the support.
INTRODUCTION

The selective synthesis of methanol from CO and H₂ over Group VIII metals has been reported in several recent studies (1-5). Poutsma et al. (1) have demonstrated that both silica- and alumina-supported Pd catalyzed the hydrogenation of CO to methanol with high selectivity. Methane formation was found to be significant only outside the temperature pressure regime for which methanol formation is thermodynamically favorable. The behavior of Pt and Ir were similar but these metals were less active than Pd. The authors suggested that the attainment of high methanol selectivities might be attributed to the inability of all three metals to chemisorb CO dissociatively at reaction temperatures, compared to other Group VIII metals. The synthesis of methanol over Rh, Pd, Ir, and Pt has also been investigated by Ichikawa (2-5) in a series of studies carried out at atmospheric pressure. This work has shown that catalyst activity and selectivity depend not only on the choice of metal, but also on the composition of the metal precursor and acid/base properties of the metal oxide support. On a given support much higher methanol activities and selectivities were obtained by pyrolysis of transition metal complexes (e.g., Rh₄(CO)₁₂, Ir₄(CO)₁₂, [Pt₁₅(CO)₃₀][NET₄]₂, etc.) than by reduction of halogen containing compounds (e.g., RhCl₃ or H₂PtCl₆). High methanol activity and selectivity was further favored by the use of moderately basic supports such as MgO, La₂O₃, Y₂O₃ and Nd₂O₃. Utilization of strongly basic or acidic supports such as Li₂O, SiO₂, TiO₂, and WO₃ greatly suppressed the synthesis of methanol and elevated somewhat the synthesis of methane.
The objectives of the present research were to explore further the effects of support composition on the specific activity of Pd for the synthesis of methanol and other products. These studies were carried out at 10 atm over the temperature range of 323 to 573 K. Supported Pd catalysts were prepared on SiO₂, Al₂O₃, TiO₂, ZrO₂, ZnO, MgO, and La₂O₃ by reacting bis-π-allyl palladium, Pd(π-C₃H₅)₂, with the hydroxyl groups present on the support surface. The selection of this preparative procedure was motivated by the desire to achieve intimate contact between the precursor and the support and was suggested by previous studies (6,7) showing that high precursor dispersion could be realized on SiO₂ and Al₂O₃. In addition, it was anticipated that by avoiding the presence of halogen in the precursor, more active catalysts might be prepared than those derived from PdCl₂ (1,4).

EXPERIMENTAL

Supports

A summary of the supports used in this work, the conditions of their pretreatment, and their source are listed in Table 1. Enhancement of the surface area of La₂O₃ was carried out by hydrolysis of non-porous La₂O₃ (Ventron Corp., 99.9% purity) at 353 K with subsequent filtering and drying in air at 373 K, following the method outlined in reference (8). The powdered La(OH)₃ was then pressed into a tablet and dehydrated in vacuum at 573 K. The porous La₂O₃ thus obtained was rehydrated at 298 K with water vapor and then again dehydrated at 493 K in vacuum before impregnation.

Porous ZrO₂ was prepared by coagulation of a colloidal suspension of ZrO₂ (Nyacol Inc.) and scrupulous washing of the precipitate with large quantities of distilled water. After drying in air at 373 K, the ZrO₂ powder was pressed into a tablet and dehydrated in vacuum at 773 K.
The average size of the zirconia particles in the original suspension was about 500 Å, which corresponds to a final surface area of not more than 20 m²/gm for the dried material.

Prior to impregnation by the palladium complex all of the supports were dehydrated in vacuum at 10⁻³ Torr for 15 hrs at the temperatures indicated in Table 1. Selection of the dehydration temperature was based on infrared studies of the surfaces of the oxides used (8-11) and was chosen to maximize the concentration of isolated surface hydroxyl groups, capable of reacting with Pd(π-C₃H₅)₂.

Synthesis of bis-π-allylpalladium

Bis-π-allylpalladium was obtained by reacting (C₃H₅PdCl)₂ (Strem Chemicals, Inc.) with a solution of C₃H₅MgCl in diethylether at 298 K in an inert atmosphere (6). After distillation of the ether the product compound was extracted with pentane and filtered. Further purification of the Pd(π-C₃H₅)₂ was achieved by vacuum sublimation. The yield of the final complex was ~85%, based upon the initial quantity of (C₃H₅PdCl)₂ used.

Catalyst Preparation

The vacuum dehydrated supports were impregnated with a pentane solution of Pd(π-C₃H₅)₂. A rapid irreversible adsorption of the complex was observed during impregnation, which was accompanied by a fading of the initially yellow-green solution of the complex and a coloration of the support. Following impregnation, the remaining pentane solution was decanted, and the catalyst was washed free of unreacted complex using fresh portions of pentane. The catalyst was then dried in vacuum at 298 K for 3 hrs. Finally, the catalyst was reduced in hydrogen at 573 K for 15 hrs.
The catalysts derived from \(\text{Pd}(\pi-C_3H_5)_2 \) were compared with two other catalysts. The first was a \(\text{Pd}/\text{SiO}_2 \) catalyst prepared by incipient wetness impregnation of Davison 57 silica gel with an aqueous solution of \(\text{PdCl}_2 \). This catalyst was obtained from the Union Carbide Corporation and is identical to that described by Poutsma et al. (1). The second catalyst was a palladium black (Strem Chemicals, Inc.).

Catalyst Characterization

The palladium content of each catalyst was determined by x-ray fluorescence and was found to be in good agreement with the metal loadings determined from the amount of palladium complex adsorbed by the supports. The palladium content of silica-supported catalyst obtained from Union Carbide was found to be 7.9\% rather than 4.6\%, as had been reported by Poutsma et al. (1).

Palladium dispersions for most of the catalysts were measured by \(\text{H}_2-\text{O}_2 \) titration, using the pulsed flow technique (12-14) to avoid problems associated with \(\text{H}_2 \) absorption (15). Evacuated catalyst samples were placed in the adsorption apparatus without prior exposure to air. In the presence of flowing \(\text{H}_2 \), each catalyst sample was heated to 573 K over a 1 hr. period and then maintained at 573 K for 12 hrs. At the end of this period the hydrogen flow was stopped, and the catalyst was exposed to a flow of argon for 1 hr. at 573 K. The catalyst was then cooled to room temperature over a 30 min. period.

A different procedure was used to pretreat the palladium black sample. This catalyst was first heated in flowing argon at 373 K for 1 hr to drive off adsorbed water and then reduced in flowing \(\text{H}_2 \) at 573 K for 30 min. At the end of this period the sample was again purged in flowing argon for 1 hr.

The reduced catalyst samples were titrated first with oxygen, then with hydrogen, and finally with oxygen a second time, each titration being
carried out at room temperature. For Pd supported on SiO₂, Al₂O₃, ZrO₂, and MgO, the O₂ uptake during the first and second oxygen titrations were nearly identical and equal to one half the H₂ uptake during the hydrogen titration. This ratio of the O₂ and H₂ titers is in agreement with that expected from the stoichiometries of reaction 1 and 2 (12,13).

1. \(\text{Pd-H} + \frac{3}{4} \text{O}_2 \rightarrow \text{Pd-O} + \frac{3}{2} \text{H}_2 \text{O} \)
2. \(\text{Pd-O} + \frac{3}{2} \text{H}_2 \rightarrow \text{Pd-H} + \text{H}_2 \text{O} \)

The consistency of the two oxygen titers indicates that very little adsorbed H₂ is lost during the argon purge following reduction. For Pd supported on TiO₂, ZnO, and La₂O₃, the uptake of O₂ during the first oxygen titration was greater than the uptake during the second titration by 40, 65, and 70%, respectively, suggesting that a part of the O₂ taken up during the first titration is used to replace oxygen lost from the support during reduction. It was observed, though, that the H₂ uptake during the hydrogen titration was twice the O₂ uptake during the second oxygen titration in agreement with the stoichiometries of reactions 1 and 2. In view of this, the Pd dispersions for all of the catalysts were determined by averaging the results of the hydrogen titration and the second oxygen titration.

Hydrogen-oxygen titration could not be used on the Pd black or Pd/SiO₂ catalyst obtained from Union Carbide because these materials exhibited a large weak adsorption of hydrogen well above the stoichiometric amount, possibly due to β-hydride formation (14,16). For these catalysts dispersion was determined solely by oxygen titration.
The dispersions of all of the catalysts used in this study are listed in Table 1. For the sake of subsequent discussion, the two SiO₂-supported catalysts have been designated as Pd/SiO₂ (I) and Pd/SiO₂ (II), to differentiate between the use of Pd(π-C₃H₅)₂ and PdCl₂, respectively, as the metal precursor. It is significant to note that the dispersions for those catalysts prepared by adsorption of Pd(π-C₃H₅)₂ lie between 0.2 and 0.6. These results indicate that the atomic dispersion of Pd which can be achieved when the complex is reduced at room temperature cannot be retained when reduction is carried out at elevated temperatures. This conclusion is in agreement with that reported earlier for SiO₂ and Al₂O₃ supported Pd (6) and indicates that the other supports used in this work are no more effective than SiO₂ and Al₂O₃ for stabilizing the dispersion of Pd.

Catalyst Evaluation

Catalyst testing was carried out in a tubular micro-reactor made of stainless steel. Between 0.05 and 1.88 g (see Table I) of reduced catalyst, in the form of a powder with particles of about 0.50 to 0.25 mm in diameter, was loaded into the reactor. The reactor was then flushed with helium, and the catalyst was reduced in hydrogen at 573 K. The hydrogenation of CO was conducted at a total pressure of 10 atm using a 3:1 mixture of H₂ to CO, over the temperature range of 150 to 300°C. The gas flow rate was typically 200 STP cm³/min. Products were analyzed with a Varian 3700 gas chromatograph fitted with a 1 m by 2 mm column packed with Chromsorb-106 and a flame ionization detector. The column temperature was raised from 318 to 513 at a rate of 10 K/min.

An analysis of the reaction products was conducted 10 min following the onset of reaction, after which the catalyst was reduced for 30 min in hydrogen before reintroducing the reaction mixture. If the analyses of
consecutive runs at a given temperature were not reproduced, runs were continued until a stationary state of the catalyst was attained, at which point the dependence of catalyst activity on temperature was explored. Following this, the catalyst temperature was returned to that used initially and the catalyst activity was compared with the initially measured values.

RESULTS

Methanol and C₁ through C₆ hydrocarbons were observed as the primary products for all of the catalysts tested and only occasionally were traces of ethanol detected. For Pd supported on Al₂O₃, TiO₂, ZrO₂, and MgO, dimethyl ether was also observed. Carbon monoxide conversions and product distributions determined at 523 K are given in Table 2. It is significant to note that the conversions are small in all cases and lie well below the equilibrium conversion of 10% for the conditions indicated.

During the evaluation of the catalysts, it was observed that activity of some of the catalysts either increased or decreased with repeated use, the nature and extent of these changes depending on the composition of the support. Figure 1 illustrates the manner in which the activities for methanol and total hydrocarbon synthesis change as a function of the number of runs conducted using SiO₂- and ZnO-supported catalysts. It is observed that while the methanol activity of the Pd/SiO₂ catalyst is constant the hydrocarbon activity declines to an asymptotic level after ten runs. The Pd/ZnO catalyst exhibits the reverse behavior and in this case it is the methanol activity which increases to an asymptotic level. The stability behavior of the remaining catalysts is summarized in Table 3. With
the exception of Pd/SiO₂(I), all of the catalysts exhibit a stable activity for hydrocarbon synthesis. A somewhat different pattern is observed for the synthesis of methanol. In most cases a stable activity is achieved after three or four runs, during which the activity increases several fold. However, for Pd/SiO₂(I), Pd/SiO₂(II), and Pd/La₂O₃, stable activity is reached within the first 10 min reaction period. For those catalysts which produce dimethyl ether, the activity of ether formation remains constant as the number of runs increases.

Arrhenius plots for the synthesis of methanol, dimethyl ether, and total hydrocarbons are shown in Figs. 2 through 4, and apparent activation energies determined from these plots are given in Table 2. It is evident that the support composition has a strong influence on the catalyst activity. The specific activity for methanol synthesis decreases in the order Pd/La₂O₃ ≫ Pd/SiO₂(II) > Pd/ZrO₂ > Pd/ZnO ≃ Pd/MgO > Pd/TiO₂ > Pd/Al₂O₃ ≃ Pd/SiO₂(I) ≫ Pd black. The apparent activation energy for this process is 15.8 ± 1.8 kcal/mole for the supported catalysts, but is 10.2 kcal/mole for Pd black. However, there is no clear-cut correlation between specific activity and activation energy. Dimethyl ether formation is observed over only four of the catalysts examined, and the specific activity for the formation of this product is observed to decrease in the order Pd/Al₂O₃ ≫ Pd/TiO₂ ≫ Pd/MgO ≃ Pd/ZrO₂. The apparent activation energy for dimethyl ether formation is 24.0 ± 0.5 kcal/mole and does not appear to depend very strongly on the nature of the support. The support composition is also seen to affect the specific activity of Pd for the formation of hydrocarbons but in a manner different from that in which it affects the methanol synthesis activity. As seen in
Fig. 4, the specific activity for total hydrocarbon formation decreases in the order Pd/TiO$_2$ \(\gtrsim\) Pd/ZrO$_2$ \(\sim\) Pd/La$_2$O$_3$ \(\sim\) Pd/Al$_2$O$_3$ \(\approx\) Pd/SiO$_2$ (II) \(\sim\) Pd/SiO$_2$ (I) \(\approx\) Pd black \(\gg\) Pd/MgO \(\gg\) Pd/ZnO. The apparent activation for hydrocarbon formation is 24.0 \(\pm\) 1.5 kcal/mole and is approximately the same for supported and unsupported Pd.

The composition of the support also affects the product distribution. As may be seen in Table 2, methanol selectivities of 92 to 100% are obtained when Pd is supported on SiO$_2$, MgO, La$_2$O$_3$, and ZnO. Very little, if any, dimethyl ether is formed over these catalysts. A high selectivity to oxygenated products, 95.9%, is also observed for the Al$_2$O$_3$-supported catalyst, but in this instance the methanol selectivity is only 32.5%, the balance of oxygenated products being dimethyl ether. The TiO$_2$ and ZrO$_2$-supported catalysts stand out from all the others because of their low selectivities for the formation of oxygenated products and their correspondingly high selectivities for hydrocarbon formation. Palladium black exhibits a similar behavior to these latter two catalysts.

Figure 5 and Table 2 show that the support composition has a strong influence on the distribution of hydrocarbons formed. As may be seen in Fig. 5 in most instances the percentage of CO converted to a hydrocarbon containing n carbon atoms decreases monotonically as n increases. Exceptions to this pattern are found for the MgO, Al$_2$O$_3$, and La$_2$O$_3$-supported catalysts, which produce higher yields of C$_6$ hydrocarbons than anticipated. Attention is also drawn to the TiO$_2$ and ZrO$_2$-supported catalysts since the methane selectivity is particularly high for these catalysts. Table 2 shows that the specific activity for methane synthesis over these catalysts is much greater than that observed for any of the remaining catalysts.
DISCUSSION

The observed increase in the activity of Pd when it is supported on metal oxides parallels in some respects the observations reported by Vannice (17). In studies conducted at atmospheric pressure he noted that the methanation activity of Pd supported on SiO₂ and γ-Al₂O₃ was higher than that of Pd black and that the activity increased in the order Pd/γ-Al₂O₃ >> Pd/SiO₂ > Pd black. The results presented in Table 2 show that the hydrocarbon synthesis activity does increase somewhat when Pd is supported on SiO₂ and γ-Al₂O₃ but that a much more dramatic increase is observed in activity for the synthesis of oxygenated products. The failure of Vannice (17) to observe methanol formation is not surprising since his studies were conducted at temperatures of 548 K and above. Equilibrium calculations show that at one atmosphere and such high temperatures the formation of methane will be favored strongly over the formation of methanol (1).

The exceptionally high methanol synthesis activity of Pd/La₂O₃ relative to the other catalysts tested confirms the results obtained by Ichikawa (4) in studies conducted at atmospheric pressure. The activation energies for methanol formation are also in good agreement—a value of 13.0 kcal/mole being reported by Ichikawa and a value of 14.0 kcal/mole being found in the present work. However, it is significant to note that the activity of the Pd/La₂O₃ catalyst used in the present studies appears to be considerably higher than that prepared by Ichikawa starting from PdCl₂. Examination of Table 4 shows that if Ichikawa's results are extrapolated to the conditions of the present studies, it is concluded that the catalyst used in the present work is twenty fold more active for methanol synthesis and about two fold more active for methane synthesis. A part of this difference may be ascribed to the differences in Pd
loading. Ichikawa observed that with increasing Pd content the methanol activity reached a maximum value at about 0.5% and then decreased to an asymptotic level for loadings between 1 and 5%, the ratio of the maximum activity to that observed at loadings of a few percent being about three. The remaining portion of the difference between Ichikawa's catalyst and that described here is very likely associated with differences in the nature of the palladium precursor and the origin and pretreatment of the support. Thus, Ichikawa observed (4) that the methanol synthesis activity of supported Pt catalysts was five to ten times lower when H_2PtCl_6 was used as the source of Pt than when $[\text{Pt}_3(\text{CO})_6]_{3-5} \cdot [\text{NET}_4]_2$ was used as the precursor.

The differences between the two Pd/SiO$_2$ catalysts examined in this work might also be ascribed to the effects of metal dispersion and the origin of the materials used to prepare the catalyst. The extent to which each of these factors plays a role is unknown and must await further investigation. It is significant to note, though, that Maxted and Ali (18) have observed that the activity of Pd for the hydrogenation of cyclohexene depends on the composition of the support, the origin of the support and the loading of Pd.

The present knowledge of the interactions between Pd and metal oxide supports is inadequate to permit the development of a satisfactory interpretation for the effects of support composition on the activity of Pd for the synthesis of methanol and hydrocarbons. However, since there has been some discussion in the recent literature concerning the influence of metal-support interactions on the chemisorptive and catalytic properties of transition metals, it is instructive to
review these efforts in order to determine whether the conclusions drawn might help to explain at least a part of the present results.

Strong evidence for the influence of metal-support interactions on the chemisorption of H_2 and CO has been presented recently by Tauster et al. (19,20). Their results have shown that the H_2 and CO chemisorption capacities of Ru, Rh, Pd, Os, Ir, and Pt supported on TiO$_2$ (19) and the H_2 chemisorption capacity of Ir supported on TiO$_2$, V$_2$O$_3$, Nb$_2$O$_5$, and Ta$_2$O$_5$ decrease with an increase in the temperature at which the supported metal is reduced in hydrogen. Electron microscopy and x-ray diffraction showed that these losses in chemisorption capacity were not due to metal agglomeration. It was suggested, therefore, that reduction at high temperatures gives rise to a strong metal support interaction (SMSI) and that the occurrence of SMSI properties depends on the ease with which the metal oxide can be reduced.

Tauster et al. (19) proposed that the SMSI properties of TiO$_2$ might be explained in terms of metal-metal bonding between the noble metal and titanium cations or, alternatively, the formation of intermetallic compounds. Support for the first of these possibilities has been presented by Horsley (21), based on SCF-Xα molecular orbital calculations for molecular cluster models of Pt/TiO$_2$. These calculations favor a structure in which Pt atoms are inserted into surface oxygen vacancies in the support, with bonding between the titanium cations and the Pt atoms. Horsley suggested that if the Pt-Ti bonds were stronger than the Pt-Pt bonds, then Pt atoms would be preferentially attracted to surface anion vacancies formed by reduction of TiO$_2$ rather than to other Pt atoms. Such an occurrence would explain the epitaxial growth of thin rafts of Pt atoms on TiO$_2$ (22). It was speculated that
the absence of corner atoms of steps in the rafts of Pt atoms might explain the suppression of H_2 chemisorption, since such sites have been claimed to be necessary for the dissociative chemisorption of H_2 (23).

The relevance of SMSI effects to the present work is unclear. Of the supports used here, only TiO_2 has been demonstrated to exhibit SMSI activity, and, based on the work of Tauster and Fung (20) with Ir/TiO$_2$, one could anticipate that Pd/TiO$_2$ reduced at 573 K should exhibit such activity. However, since the H_2 chemisorption capacity of this catalyst was not unusually low, SMSI effects cannot be invoked automatically. This does not rule out the possibility, though, that Pd on TiO$_2$ and on other supports experiences weaker metal-support interactions which, while not markedly affecting the chemisorption characteristics of the metal, may still influence its catalytic properties.

Based upon results obtained by Figueras et al. (24) and Van Hardeveld and Hartog (25), Vannice (17) has suggested that the higher methanation activities of Al$_2$O$_3$ and SiO$_2$-supported Pd, compared to Pd black, might be ascribed to an enhanced formation of weakly bound, linearly adsorbed CO species. It was reasoned that such an enhancement could be due to a decrease in metal crystallite size or to a metal-support electron transfer which might result in the stabilization of surface structures not normally present on large metal crystallites. While such an explanation might also be invoked to explain the higher hydrocarbon synthesis activities observed using the La$_2$O$_3$, ZrO$_2$, and TiO$_2$ supported palladium catalysts described here, the experimental evidence needed to support such an interpretation is not available.

In the studies reported by Ichikawa (2-5) it was suggested that the acidity or basicity of the support has a significant influence on the
selectivity of the products formed from CO and H$_2$. Basic supports were observed to promote the formation of oxygenated products while acidic supports favored the formation of hydrocarbons. Examination of the present results in terms of the acidity or basicity of the support confirms that the highest methanol selectivities are observed on the most basic oxide supports (e.g., La$_2$O$_3$, MgO, ZnO). The case of γ-Al$_2$O$_3$ is anomalous however, since a high selectivity for oxygenated products is observed over a support which is strongly acidic. Thus, it is not clear to what extent acidity or basicity of the support plays a dominant role in defining the selectivity of supported Pd.

A clearer relationship can be established between support acidity and the formation of dimethyl ether. The results presented in Table 2 and Fig. 3 show that the highest activities for dimethyl ether formation are exhibited by Pd supported on γ-Al$_2$O$_3$ and TiO$_2$. Both supports are acidic (26) and are known to catalyze the formation of dimethyl ether during the decomposition of methanol (27,28). The lower rate of dimethyl ether formation over TiO$_2$ compared to Al$_2$O$_3$ is most likely attributable to the lower strength and concentration of acid sites on TiO$_2$ (26).

Consistent with this trend, it is observed that very little dimethyl ether is formed for Pd supported on MgO or ZrO$_2$, materials which exhibit very small concentrations of acid sites, and that the formation of dimethyl ether is totally suppressed when Pd is supported on basic oxides such as ZnO and La$_2$O$_3$ or on a neutral oxide such as SiO$_2$. It is noted further that studies of methanol decomposition over MgO (29), ZnO (30), and rare earth oxides (31) also show dimethyl ether formation to be insignificant. Based on these observations, it is concluded that the dimethyl ether observed in these studies results from the decomposition of methanol, subsequent to its formation.
The exceptionally high activities of Pd/TiO\textsubscript{2} and Pd/ZrO\textsubscript{2} for the synthesis of methane, noted in Table 2 and Fig. 5, agree with Ichikawa's (4) observations at 1 atm, but the origin of this specificity cannot readily be explained. One possibility is that a substantial portion of the methane formed over these catalysts arises from a decomposition of methanol. Carrizosa et al. (28) have reported that methanol will decompose over rutile at 523 K, to produce coke and methane but that coke decomposition on anatase occurs only at temperatures in excess of 673 K. Since the TiO\textsubscript{2} used in the present studies consists of 87% anatase and 13% rutile (32), it is possible that methanol decomposition on the rutile phase might form methane and carbon. Since hydrogen is always present in the gas phase, the carbon might be expected to undergo rapid hydrogenation instead of producing coke. The extent to which such processes might occur on ZrO\textsubscript{2} is uncertain; however, it seems reasonable to expect TiO\textsubscript{2} and ZrO\textsubscript{2} to exhibit similar characteristics, since both Ti and Zr are part of Group IVB.

CONCLUSIONS

The results presented in this study indicate that the activity and selectivity of supported Pd catalysts for CO hydrogenation are strongly influenced by the composition of the support and differ significantly from those of Pd black. Utilization of basic metal oxide supports such as MgO, ZnO, and La\textsubscript{2}O\textsubscript{3} favors the formation of methanol, the selectivity to this product exceeding 98%. High methanol selectivity (98%) is also observed for Pd supported on SiO\textsubscript{2}, a neutral oxide. When an acidic metal oxide such as Al\textsubscript{2}O\textsubscript{3}, TiO\textsubscript{2}, or ZrO\textsubscript{2} is used as the support, the methanol selectivity is suppressed at the expense of forming hydrocarbons. Acidic sites on the support also appear to be responsible for converting a part of the methanol formed
to dimethyl ether. The manner in which the acid/base properties of the support express their influence on the catalytic properties of Pd is not understood at present. An electronic interaction between the metal and the support is suggested but it appears that this interaction is not of the SMSI-type discussed in the literature (18,19).

Other factors besides the support composition may also influence the activity and selectivity of Pd, among these being the nature of the Pd precursor, the loading and/or dispersion of Pd, the source of the support and the manner of catalyst pretreatment. Thus, for example, the exceptionally high activity and selectivity of the Pd/La₂O₃ catalyst described in these studies may be due to its preparation by reaction Pd(π-C₃H₅)₂ with hydroxyl groups present on the support. The extent to which each of the factors noted exerts an effect on catalyst performance is not yet established and must await further investigation.

ACKNOWLEDGMENT

The authors wish to thank Dr. Jule A. Rabo of the Union Carbide Corporation for donation of the catalyst sample designated as Pd/SiO₂ (II). This work was supported by the National Science Foundation under Grant 78-18989-BELL-ZF 04/80 and by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy, under Contract #W-7405-ENG-48.
REFERENCES

Table 1 Support and Catalyst Characteristics

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Source of Support</th>
<th>Support Surface Area (m²/gm)c</th>
<th>Dehydration Temp. (K)</th>
<th>Pd Loading (wt. %)</th>
<th>D<sub>Pd</sub></th>
<th>Catalyst Charge (gm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd/MgO</td>
<td>Mallinckrodt</td>
<td>100</td>
<td>873</td>
<td>0.3</td>
<td>0.20</td>
<td>0.57</td>
</tr>
<tr>
<td>Pd/ZnO</td>
<td>Kadox 25</td>
<td>10</td>
<td>723</td>
<td>0.3</td>
<td>0.50</td>
<td>1.10</td>
</tr>
<tr>
<td>Pd/Y-Al₂O₃</td>
<td>Kaiser S-201</td>
<td>250</td>
<td>873</td>
<td>2.1</td>
<td>0.40</td>
<td>0.55</td>
</tr>
<tr>
<td>Pd/La₂O₃</td>
<td>Ventron</td>
<td>14<sup>d</sup></td>
<td>493</td>
<td>0.2</td>
<td>0.23</td>
<td>1.04</td>
</tr>
<tr>
<td>Pd/SiO₂ (I)</td>
<td>Davison 70</td>
<td>250</td>
<td>873</td>
<td>1.5</td>
<td>0.36</td>
<td>0.28</td>
</tr>
<tr>
<td>Pd/SiO₂ (II)</td>
<td>Davison 57</td>
<td>-</td>
<td>-</td>
<td>7.9 (4.6)<sup>a</sup></td>
<td>0.17 (0.26)<sup>b</sup></td>
<td>0.05</td>
</tr>
<tr>
<td>Pd/TiO₂</td>
<td>Degussa P-25</td>
<td>50</td>
<td>673</td>
<td>0.5</td>
<td>0.35</td>
<td>0.56</td>
</tr>
<tr>
<td>Pd/ZrO₂</td>
<td>Nyacol</td>
<td>20</td>
<td>773</td>
<td>0.3</td>
<td>0.48</td>
<td>1.88</td>
</tr>
<tr>
<td>Pd Black</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.003</td>
<td>0.10</td>
</tr>
</tbody>
</table>

^a Obtained from Union Carbide (1) - Pd loading reported as 4.6%

^b _DPd based on a Pd loading of 4.6%

^c Reported by support manufacturer

^d Reported by Rosynek et al. (8)
<table>
<thead>
<tr>
<th>Catalyst</th>
<th>CO Conv. (%)</th>
<th>E_a (kcal/mole)</th>
<th>Turnover Freq. (x10³ s⁻¹)</th>
<th>S(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CH_3OH</td>
<td>CH_3OCH_3</td>
<td>$\text{CH}_4 + \text{C}_2^+$</td>
</tr>
<tr>
<td>Pd-Black</td>
<td>0.01</td>
<td>10.2</td>
<td>23.3</td>
<td>0.60</td>
</tr>
<tr>
<td>0.3% Pd/MgO</td>
<td>0.1</td>
<td>16.6</td>
<td>23.4</td>
<td>26.9</td>
</tr>
<tr>
<td>0.2% Pd/ZnO</td>
<td>0.4</td>
<td>17.6</td>
<td>24.5</td>
<td>26.9</td>
</tr>
<tr>
<td>1.5% Pd/Al₂O₃</td>
<td>0.1</td>
<td>14.2</td>
<td>24.6</td>
<td>25.9</td>
</tr>
<tr>
<td>0.2% Pd/La₂O₃</td>
<td>0.5</td>
<td>14.0</td>
<td>24.9</td>
<td>25.9</td>
</tr>
<tr>
<td>1.5% Pd/SiO₂ (I)</td>
<td>0.1</td>
<td>17.2</td>
<td>24.1</td>
<td>25.9</td>
</tr>
<tr>
<td>7.9% Pd/SiO₂ (II)</td>
<td>1.5</td>
<td>14.1</td>
<td>25.7</td>
<td>25.9</td>
</tr>
<tr>
<td>0.5% Pd/TiO₂</td>
<td>0.3</td>
<td>16.0</td>
<td>23.5</td>
<td>23.2</td>
</tr>
<tr>
<td>0.3% Pd/ZrO₂</td>
<td>0.7</td>
<td>15.2</td>
<td>22.9</td>
<td>24.0</td>
</tr>
</tbody>
</table>

Reaction Conditions: $T = 250°C; P = 10$ atm; $H_2/CO = 3$
Table 3 Stability of Supported and Unsupported Pd

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>CH$_3$OH</th>
<th>CH$_3$OCH$_3$</th>
<th>CH$_4$ + C$_2$+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd-Black</td>
<td>Stable</td>
<td>-</td>
<td>Stable</td>
</tr>
<tr>
<td>0.3% Pd/Mgo</td>
<td>Inc.</td>
<td>Stable</td>
<td>Stable</td>
</tr>
<tr>
<td>0.3% Pd/ZnO</td>
<td>Inc.</td>
<td>-</td>
<td>Stable</td>
</tr>
<tr>
<td>1.5% Pd/Al$_2$O$_3$</td>
<td>Inc.</td>
<td>Stable</td>
<td>Stable</td>
</tr>
<tr>
<td>0.2% Pd/La$_2$O$_3$</td>
<td>Stable</td>
<td>-</td>
<td>Stable</td>
</tr>
<tr>
<td>1.5% Pd/SiO$_2$ (I)</td>
<td>Stable</td>
<td>-</td>
<td>Dec.</td>
</tr>
<tr>
<td>7.9% Pd/SiO$_2$ (II)</td>
<td>Stable</td>
<td>-</td>
<td>Stable</td>
</tr>
<tr>
<td>0.5% Pd/TiO$_2$</td>
<td>Inc.</td>
<td>Stable</td>
<td>Stable</td>
</tr>
<tr>
<td>0.3% Pd/ZrO$_2$</td>
<td>Inc.</td>
<td>Stable</td>
<td>Stable</td>
</tr>
</tbody>
</table>

Reaction Conditions: $T = 250°C$; $P = 10$ atm; H_2/CO = 3; 200 cm3(STP)/min
Table 4. Comparison of Pd/La$_2$O$_3$ Catalysts

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Catalyst</th>
<th>E_a (kcal/mole)</th>
<th>Reaction Rate (mmole/hr·gm Pd)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CH$_3$OH</td>
<td>CH$_4$</td>
</tr>
<tr>
<td>Ichikawa (4)</td>
<td>2.9% Pd/La$_2$O$_3$</td>
<td>13.0</td>
<td>29.0</td>
</tr>
<tr>
<td>This work</td>
<td>0.2% Pd/La$_2$O$_3$</td>
<td>14.0</td>
<td>24.9</td>
</tr>
</tbody>
</table>

Reaction Conditions: $T = 250^\circ$C; $P = 10$ atm; H_2/CO = 3

aExtrapolated from measurements made at $T = 200^\circ$C; $P = 1$ atm; H_2/CO = 2 using the relationship $r_{\text{CH}_3\text{OH}} = k_1 P_{\text{H}_2} P_{\text{CO}}^{0.4} \exp(-13000/RT)$, given in ref. (4).

bExtrapolated from measurements made at $T = 200^\circ$C; $P = 1$ atm; H_2/CO = 2 using the relationship $r_{\text{CH}_4} = k_2 P_{\text{H}_2} P_{\text{CO}}^{-0.4} \exp(-29000/RT)$ given in ref. (4).
FIGURE CAPTIONS

Fig. 1 Dependences of the methanol and hydrocarbon formation rates over Pd/SiO$_2$ (I) and Pd/ZnO as functions of the number of consecutive runs performed.

Fig. 2 Arrhenius plots for the formation of methanol: $P = 10$ atm; $H_2/CO = 3$.

Fig. 3 Arrhenius plots for the formation of dimethyl ether: $P = 10$ atm; $H_2/CO = 3$.

Fig. 4 Arrhenius plots for the formation of hydrocarbons: $P = 10$ atm; $H_2/CO = 3$.

Fig. 5 Percentage of the CO converted to hydrocarbons containing 1 to 6 carbon atoms: $T = 250^\circ$C; $P = 10$ atm; $H_2/CO = 3$.
FIGURE 1

Pd/SiO$_2$, 252°C

Pd/ZnO, 200°C

$\frac{r}{r_{\text{MeOH}}}$ (mmol CO/g Pd-hr)

$\frac{r}{r_{\text{HC}}}$ (mmol CO/g Pd-hr)

Run Number

XBL 813-6597
FIGURE 2

Log of Methanol Synthesis Activity (molecule CO/s-site) vs. \(10^3/T\) (K\(^{-1}\)).

- Pd/La\(_2\)O\(_3\)
- Pd/ZnO
- Pd/MgO
- Pd/TiO\(_2\)
- Pd/SiO\(_2\)(II)
- Pd/ZrO\(_2\)
- Pd/Al\(_2\)O\(_3\)
- Pd/SiO\(_2\)(I)
- Pd-Black
- CH\(_3\)OH
FIGURE 3

Log of Ether Synthesis Activity (molecule CO/s-site)

$10^3/T$ (K$^{-1}$)

Pd/MgO
Pd/Al$_2$O$_3$
Pd/TiO$_2$
Pd/ZrO$_2$

CH_3OCH_3
FIGURE 4

Log of Hydrocarbon Synthesis Activity (molecule CO/s-site)

10^3/T (K^{-1})

Pd-Black
Pd/TiO_2
Pd/La_2O_3
Pd/MgO
Pd/ZrO_2
Pd/ZnO
Pd/SiO_2 (I)
Pd/Al_2O_3
Pd/SiO_2 (II)

\[\sum_{1}^{6} C_n \]
FIGURE 5

- Pd/MgO Pd/ZnO Pd/Al₂O₃ Pd/La₂O₃
- Pd/SiO₂ Pd/TiO₂ Pd/ZrO₂ Pd-Black

% CO vs Carbon Number

- XBL 813-8601