Lawrence Berkeley National Laboratory
Recent Work

Title
BIBLIOGRAPHY OF PARTICLE ACCELERATORS - JULY 1948 to DEC. 1950

Permalink
https://escholarship.org/uc/item/0m72734s

Author
Cushman, Bonnie E.

Publication Date
1951-03-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
BIBLIOGRAPHY OF PARTICLE ACCELERATORS

JULY 1948 TO DECEMBER 1950

Bonnie E. Cushman

March, 1951

Berkeley, California
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>General</td>
<td>4</td>
</tr>
<tr>
<td>Betatrons</td>
<td>6</td>
</tr>
<tr>
<td>Cyclotrons</td>
<td>11</td>
</tr>
<tr>
<td>Electrostatic Generators</td>
<td>15</td>
</tr>
<tr>
<td>F.M. Cyclotrons</td>
<td>18</td>
</tr>
<tr>
<td>Linear Accelerators</td>
<td>21</td>
</tr>
<tr>
<td>Microtrons (Electron Cyclotrons)</td>
<td>25</td>
</tr>
<tr>
<td>Proton Synchrotrons</td>
<td>26</td>
</tr>
<tr>
<td>Synchrotrons</td>
<td>29</td>
</tr>
<tr>
<td>Ion Sources</td>
<td>34</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>37</td>
</tr>
<tr>
<td>Particle Accelerators in the United States</td>
<td>40</td>
</tr>
<tr>
<td>Particle Accelerators Outside the United States</td>
<td>50</td>
</tr>
</tbody>
</table>
Introduction

This bibliography is a supplement to that compiled and edited by E. Thomas, P. Mittelman, and H. H. Goldsmith, issued July 1, 1948 as BNL-L-101. The journals searched were Chemical Abstracts; Science Abstracts, Section A (Physics) and Section B (Electrical Engineering); Nuclear Science Abstracts; and Nucleonics. The period covered was June 1948 through December 1950. News briefs are not included in the list, nor is the majority of reports published by various institutions concerning progress in the construction of their particle accelerators. Information pertaining to particle accelerators was obtained primarily from a list of questions sent to institutions throughout the world. It is hoped that both the bibliography and list of accelerators are fairly complete. Notification of omissions and inaccuracies will be greatly appreciated.
BIBLIOGRAPHY OF PARTICLE ACCELERATORS
JULY 1948 TO DECEMBER 1950

General

Atomes 2, 337-344 (1948)
The machine giants of nuclear physics. In French.

Brobbeck, W. M.
Accelerating atomic particles. Physics Today 1, No. 6, 27-30 (1948).

Burrill, E. Alfred
The accelerator conference. Physics Today 1, No. 5, 12-16 (1948).

Cardwell, D. W.

Chew, Geoffrey F., and Moyer, Burton J.
High energy accelerators at the University of California Radiation Laboratory. American Journal of Physics 18, 125-36 (1950).

Chew, Geoffrey F., and Moyer, Burton J.
High energy accelerators at the University of California Radiation Laboratory. UCRL-444, Sept. 9, 1949. 39 p.

Chick, D. R., and Pentz, M. J.

Dobbie, L. G.

Elias, J. B.

Engineering 169, 734-5 (1950)
The Harwell Atomic Energy Research Establishment.

Farly, George M.
Pulsed power particle accelerators. UCRL-693, May 4, 1950. 2 p.

Fry, D. W.
Grinberg, A. P.
New accelerators of charged particles; a review of published data.
Part I. Zhurnal Tekhicheskoi Fiziki 12, 1-29 (1949); Part II.
Zhurnal Tekhicheskoi Fiziki 12, 153-83 (1949). In Russian.

Heyn, F. A.
Apparatus for acceleration of particles. Nederlandsch Tijdschrift
voor Natuurkunde 15, 45-73 (1949). In Dutch.

Power for atomic accelerators. Atomics 6, No. 3, 5-12 (1950).

Lapostolle, P.
The accelerators of electrons and particles. Revue Générale de
l'Electricité 57, 473-80 (1948).

Livingston, M. S.
Particle accelerators. Advances in Electronics 1, 269-316 (1948).

McMillan, Edwin M.
(1950).

Scientific American 179, No. 4, 18-19 (1948).
World's accelerators. Map.

Simpson, O. C.
Some engineering problems of atomic energy research. Mechanical
Engineering 70, 729-32 (1948).

Wahlin, H. R.
High speed atoms. Wisconsin Engineer 52, No. 5, 13-14 (1948).

Woodyard, J. R.
High energy particle accelerators. Electrical Engineering 67, 759-67
(1948).
Betatrons

Adams, G. D.

Techniques for application of the betatron to medical therapy. American Journal of Roentgenology and Radium Therapy 60, 153-7 (1948).

Beama Journal for the British Electrical Industry 55, 313-18 (1948)
The work of the BTH Research Laboratory.

Bierman, A., and Cele, H. A.

Bierman, A.

Bosley, W., et al.

Bosley, W., et al.

Charlton, E. E., and Baldwin, G. C.
Nuclear research with the 100 Mev betatron. Proceedings of the National Electronics Conference 2, 650-72 (1946).

Courant, E. D., and Bethe, H. A.

dePackh, D. C., and Birnbaum, M.

Dietz, T. W., and Dickinson, T. M.

Dobbie, L. G.

Dosse, Joachim
The betatron. Revue Scientifique 86, 357-68 (1948). In French.

Engineering 167, 55-8 (1949)
16 Mev betatron at the Clarendon Laboratory, Oxford.

Goward, F. K.
Goward, F. K.

Goward, F. K.

Goward, F. K., and Dain, J.

Goward, F. K., et al.

Gregg, E. C., Jr.

Gregg, E. C., Jr.

Gregg, E. C., Jr.

Gund, Konrad
The betatron (electron centrifuge). Das Elektron in Wissenschaft und Technik 1, 389-98 (1947); Chemisches Zentralblatt 1948, I, 1091.

Gund, K.

Gund, K., and Paul, W.

The betatron building and installation at the University of Saskatchewan. Science 110, 283-85 (1949).

Heymann, F. F.
Hinteregger, Hans
General betatron theory. Sitzungberichte der Österreichischen
Akademie der Wissenschaften, Abteilung IIa, 156, 299-334 (1948).

Hull, Gordon F., Jr.
High frequency betatron. Office of Naval Research, London, Technical

Jahn, H., and Kopfermann, H.
On the radial oscillations of the electrons in a betatron. Annalen
der Physik, Leipzig, 6, 305-20 (1949). In German.

Integrator-expander circuits for the control of the maximum x-ray energy

Kerst, Donald W. (to the Board of Trustees of the University of Illinois,
Champaign, Ill.)

Kerst, D. W., et al.

Kerst, D. W., et al.
An 80 Mev model of a 300 Mev betatron. Review of Scientific Instruments
21, 462-80 (1950).

Kerst, D. W.

Kerst, D. W. et al.
Letter.

Kerst, D. W.
A process aiding the capture of electrons injected into a betatron.

Kerst, D. W. (to U.S. Secretary of the Navy)
Stereoscopic x-ray pictures with betatron. U.S. Patent 2,473,956,

Kollath, R., and Schumann, G. Z.
Researches on a 15 mV betatron. Zeitschrift für Naturforschung 2a,
634-42 (1947). In German.

Kopfermann, H., and Paul, W.
Experimental investigation of an electron accelerator for six Mev.
Nachrichten der Akademie der Wissenschaften in Göttingen, Mathematisch-
Johns, H. E.
The betatron in cancer therapy. Nucleonics 2, No. 4, 76 (1950).

Lasich, W. E., Muirhead, E. G., and Wright, I. F.

Latham, R., and Pentz, M. J.

Lawson, J. D.

Muehlhause, C. O., and Friedman, H.

Orlin, J. J.

Pennsylvania, University of

Picht, J.
On the theory of the acceleration of an electron in a magnetic alternating field. (Contribution to the Theory of the Rheotron or Betatron.) I. Optik 6, 40-55; II. Optik 6, 61-97; III. Optik 6, 133-44 (1950). In German.

Quastler, H., et al.

Rushforth, L., Morrison, S. T., and Brett, J. G.
A 15-inch glass betatron toroid. BTH-Activities 12, 357-62 (1948).

Schwartz, E.
Electron optics of the betatron. Zeitschrift für Naturforschung 4a, 198-204 (1949). In German.

Skaggs, L. S.
Skaggs, L. S., et al.

Skaggs, L. S., Laughlin, J. S., and Lanzl, L. H.
Technique of producing an external beam of electrons from the betatron.
Physical Review 73, 1223 (1948).

Wang, P. K. S., and Wiener, M.
Spectral analysis of 10 Mev betatron radiation by nuclear emulsion.

Watson, H. H. H.

Westendorp, Willem F. (to General Electric Co., Schenectady, N. Y.)

Westendorp, W. F., and Elder, F. R.

Wideroe, R.

Wilkins, J. J.

Wilkins, J. J.

Wilkinson, K. J. R.
A recent betatron development. BTH Activities 12, 417-24 (1948).
Cyclotrons

See also *F.M. Cyclotrons*. Articles concerning the 184-inch cyclotron at the University of California Radiation Laboratory are listed under *F.M. Cyclotrons*. See also (Electron Cyclotrons) Microtronos.

Abelson, P. H., and Kruger, P. G.

Baker, O. H.

Baker, W. R.
The oscillator for the injector cyclotron of the quarter-scale bevatron. UCRL-457, Sept. 21, 1949. 10 p.

Bakker, C. J.
The Amsterdam cyclotron. Voordrachten gehouden voor het Koninklijk Instituut van Ingenieurs 2, 517-23 (1950). In Dutch.

Barnes, S. W., et al.

Barnes, S. W., et al.

Bell, M. E., and Hull, G. F., Jr.

Creutz, E., et al.

Curtis, B. R., Fowler, J. L., and Rosen, L.

Davison, F. W., and Pollard, E. D.

Delano, Victor, and Goodman, Clark.
Delano, Victor, and Goodman, Clark

Dickson, J. M., and Snowden, M.

Dobbie, L. G.
Cyclotron; continuous wave fixed frequency excitation. Bibliography. Australia, Aug. 1948. 6 p. NP-1230.

English Electric Journal 11, 113-18 (1950)
Cyclotron power supplies.

Foss, Martyn H.

Harvard University Nuclear Laboratory

Lindström, Gunnar.

Lofgren, E. J.

Mann, Wilfred B.

Maslov, A. S.

Moreno, T.

Nucleonics 7, No. 1, 72 (1950)
Recommendations for design of small cyclotrons. (From UCR1=476 by Louis Wouters)
Perlman, I.

Pickavance, T. G., Adams, J. B., and Snowden, M.

Rabinovich, M.

Reid, A. F. (to U.S. Atomic Energy Commission)

Rose, David

Rotblat, J.

Sagane, R., Yamamoto, N., and Imai, Y.
Preliminary experiments for the study of the nuclear reaction by using photographic plates. I. Homogeneity of the range of deuterons produced by the cyclotron. Bulletin of the Institute of Physical and Chemical Research (Tokyo) 22, 701-6 (1943).

Salisbury, Winfield W. (to Collins Radio Company, Cedar Rapids, Iowa)

Saunders, A. L.

Siegel, Benjamin V., and Sinnott, Richard C.
The El Cerrito cyclotron. Physics Today 1, No. 4, 10-13, 26 (1948).

Sommer, H., and Thomas, H. A.

Swiss Patent 244,180, March 17, 1948.
Cyclotron design.

Tape, G. F.
University of Chicago Institute for Nuclear Studies
Research program with the Chicago cyclotron; progress report, August 1, 1948 to August 1, 1949. n.d. 128 p. AEC File No. NP-1493.

Went, J. J.

White, M. G., et al.

Wouters, Louis

York, H., et al.
Electrostatic Generators

Cockcroft-Walton and Van de Graaff generators, Statitrons, etcetera.

Bane, S. J., Jr., and Baggett, L. M.

Boag, J. W.
Electrostatic generators. Science Progress 37, 244-58 (1949).

Cooper, John N.

Dobbe, L. G.

Eurcham, W. E.

Forsbergh, Peter W., Jr.

Fortescue, R. L., and Hall, P. D.

Green, G. W.

Inglis, D. R., Krone, R. W., and Hanna, S. S.

Jennings, Burridge

Jennings, B.

Jeppson, M. R., and Turner, C. M.
Lorrain, Paul

Los Alamos Laboratory

Lown, V. W.

Machlett, R. R.

McKibben, J. L., and Beauchamp, R. K.

McKibben, J. L.

Ohlin, P., and Beckman, O.

Pennsylvania, University of

Ranger, Richard H.

Sessions, W. P.

Shoupp, W. E.
The electrostatic generator used in nuclear studies. Electrical Engineering 67, 668-71 (1948).

Shoupp, W. E.
Turner, C. M., et al.

Turner, C. M., et al.
The Berkeley four million volt electrostatic generator. Physical Review 73, 534 (1948).

Turner, C. M.

Van de Graaff, R. J., Trump, J. G., and Buechner, W. W.
See also: Cyclotrons.

Adams, J. B., Randle, T. C., and Edmunds, A. O.

Benson, W. K., et al.

Debraine, Pierre, and Simane, Cestmir

Debraine, Pierre, and Simane, Cestmir
Arrangement for the automatic synchronization of the cyclotron. Journal de Physique et la Radium 2, 113-21 (1948).

Dodson, A.
184-inch cyclotron half-life measurements on dee. MDDC-1028. 2 p. (1947).

Edwards, R. F., and Owren, H. M.
Instruction notes for 184-inch cyclotron deflector high voltage pulse generator model IV (2L 7044), trigger amplifier (2L 6952), deflector regulator (2L 6974), regulator delay (2L 6932) and deflector power supply (3Z 1574). AECU-350, June 14, 1949. 19 p.

Foss, Martyn

Gardner, Eugene, and Lattes, C. M. G.

Grauer, Carl T.
Henrich, L. R., Sewell, D. C., Vale, J.

Henrich, L. R., Sewell, D. C., and Vale, J.

Kramer, H. F.

Design of the radiofrequency system for the 184-inch cyclotron. AECD-2071 (UCRL-62); Review of Scientific Instruments 20, 126-33 (1949).

MacKenzie, K. R., and Waitman, V. B.

MacKenzie, K. R.

Moyer, B. J., York, H. F., and Bjorklund, R.

Panofsky, W. K. H., and Baker, W. R.

Panofsky, W. K. H., and Baker, W. R.

Panofsky, W. K. H., and Martinelli, Ernest A.

Park, C. W.
184-inch cyclotron data. AECU-351, April 1, 1949. 17 p.

Powell, W. M., et al.
Radiation Laboratory, Berkeley, California

Williams, E. M., Johnson, L. W., and Collins, H. M.
Linear Accelerators

Alvarez, Luis, et al.

Baker, W. R., Franck, J. V., and Gow, J. D.
Linear accelerator oscillator and coupling system. Physical Review 73, 535 (1948).

Bradner, Hugh, et al.

Brillouin, L.

Clark, C. L.

Cockcroft, J.

Fry, D. W., and Walkinshaw, W.

Fry, D., et al.

Graffunder, W.

Hoyaux, Max

Knudsen, Hans Lottrup
Lawton, Elliott J.

Lawton, Elliott H., and Hahn, W. C.

Loach, B. G.

Two cavity operations of Yale linear electron accelerator. Physical Review 74, 1243 (1948).

McMillan, Edwin M.

Messiah, Albert

Miller, B. L., and Wolf, J. M.
The acceleration of electrons by cylindrical cavities in TM_{01m} modes. Physical Review 72, 657 (1948).

Mullett, L. B., and Leach, B. G.

Mullett, L. B.

Mullett, L. B., and Loach, B. G.

Newberry, G. R.

Newberry, G. R.

Panofsky, W. K. H., Richman, Chaim, and Oppenheimer, Frank
Control of the field distribution in the linear accelerator cavity. Physical Review 72, 535 (1948).
Panofsky, Wolfgang K. H.

Schiff, L. I.

Schultz, H. L., et al.
Preliminary studies of operation of the Yale linear electron accelerator. Physical Review 72, 1259 (1948).

Serber, Robert

Sessions, W. P.

Sherby-Harvie, R. B. R.

Sherby-Harvie, R. B. R.-

Sherby-Harvie, R. B. R.-

Sherby-Harvie, R. B. R.-, and Mullett, L. B.

Shire, E. S.

Slater, J. C.

Stanford University Microwave Laboratory
Linear electron accelerator project; status report, Sept. 1--Nov. 30, 1949. 9 p. ML-109.

Stanford University Microwave Laboratory
Terrall, J. R.
On the motion of particles in a traveling wave linear accelerator.

Thomason, J. G.

Walkinshaw, W.

Wiblin, E. R.
Microtrons
(Electron Cyclotrons)

Henderson, W. J., and Redhead, P. A.
The electron cyclotron. Nucleonics 5, No. 4, 60 (1949).

Henderson, W. J., LeCaine, H., and Montalbetti, R.

Redhead, P. A., LeCaine, H., and Henderson, W. J.
Proton Synchrotrons

Bevatrons, Cosmotrons, et cetera

Andreev, K.

Baker, W. R.
The oscillator for the injector cyclotron of the quarter-scale bevatron. UCRL-457, Sept. 20, 1949. 10 p.

Bell, M. E., and Hull, G. F., Jr.

Blewett, John P.

Blewett, M. Hildred

British Report M-4272, Nov. 12, 1948
Data on Birmingham proton synchrotron. 2 p.

Brobeck, W. M.

Brobeck, W. M.
Design study for a ten Bev magnetic accelerator. Review of Scientific Instruments 19, 545-51 (1948); MDDC-1697.

Coor, T.
The Birmingham 1.3 Bev accelerator. Office of Naval Research (London Branch), June 14, 1949. 5 p. NP-999.

Farly, G. M.

Garren, A. A., and Smith, Lloyd
Electron-optical properties of homogeneous magnetic and radial electric fields. UCRL-599, Feb. 8, 1950. 34 p.
Theoretical considerations in the design of a proton synchrotron.

Gluckstern, R. L., and Smith, Lloyd
The injection of ions in the bevatron. Physical Review 75, 1467 (1949).

Green, G. K., Snyder, H. S., and Smith, L. W.
Dynamic magnetic measurements on cosmotron magnet model. Physical Review 72, 1289 (1949).

Green, G. K., Snyder, H. S., and Smith, L. W.
Dynamic magnetic measurements on cosmotron magnet model. AECU-263. 1 p.

Green, G. K.

Hibbard, L. U.

Hull, Gordon F., Jr.

Lawson, J. D.

Livingston, M. Stanley

Livingston, M. S., et al.
Design study for a 3 Bev proton accelerator. AECU-337. n.d. 50 p.

Livingston, M. S., et al.

Lofgren, E. J.

Lofgren, E. J.
Lofgren, E. J.

Lofgren, E. J.

Moore, Wm. H., and Blewett, John P.

Plotkin, Martin, and Blewett, John P.

Pressman, A. I., and Blewett, J. P.
A 300 to 400-Kc electrically tuned oscillator. AECU-784, n.d. 19 p.

Riedel, Jack

Sewell, D.

Smith, Lloyd
Physical Considerations concerning the design of the bevatron. AECD-2200 (UCRL-129), June 21, 1948. 26 p.

Twiss, R. Q., and Frank, N. H.

White, M. G.

Yuan, Luke C. L.
Design of a wide-band radio-frequency power amplifier for a 2.5-Bev proton accelerator. AECU-896, n.d. 9 p.
Synchrotrons

Allen-Williams, D. J., and Appleyard, R. K.

Allen-Williams, D. J., and Appleyard, R. K.

Atomics 6, No. 4, 23-25 (1950)
Seventy-million volt electron beam produced by synchrotron.

Blachman, Nelson M., and Courant, Ernest D.

Blachman, Nelson M., and Courant, Ernest D.
Scattering of particles by the gas in a synchrotron. Physical Review 74, 140-44 (1948).

Blachman, N. M., and Courant, E. D.

Blachman, Nelson M.

Cockcroft, J.

Cornell University Floyd Newman Laboratory of Nuclear Studies

Courant, E. D., and Bethe, H. A.

Courant, E. D.
A resonance effect in the synchrotron. Journal of Applied Physics 20, 611-16 (1949), AECU-76 (BNL)

Davy, N.
Dazey, Mitchell H., et al.

Dazey, Mitchell

Dazey, Mitchell H., et al.

dePackh, D. C., and Birnbaum, M.

dePackh, D. C., and Birnbaum, M.

Dobie, L. G.

A 70 Mev synchrotron. General Electric Research Laboratory. 37 p. NP-1012. n.d.

Forecast, 10, 408 (1948)
Glasgow synchrotron.

Fry, D. W., et al.

Fry, D. W.

Gauer, Gervase, and Nunan, Craig

General Electric Research Laboratory, Schenectady, N. Y.

Goward, F. K.
Goward, F. K.

Goward, F. K.

Goward, F. K., et al.

Goward, F. K.
Effect of azimuthal inhomogeneities in the magnetic field of a betatron or synchrotron. Proceedings of the Physical Society 61, 284-93 (1948).

Goward, F. K., et al.

Goward, F. K., and Wilkins, J. J.

Greenberg, J. Mayo, and Berlin, T. H.

Kaiser, T. R., and Tuck, J. L.

Kaiser, T. R.

Kaiser, T. R., and Tuch, J. L.

Kramer, H. P.

Lafferty, J. M., and Pollock, H. C.
Lawson, J. D.

Lawson, J. D.

Lawson, J. D., Walford, H. E., and Aram, J. H.

Lees, D. J., and Metcalfe, L. H.

Liben, William
Pressure gradient in a synchrotron vacuum tube. AECU-894, n.d. 2 p.

Martin, J. H.

Martin, Marvin

Radiation physics at the National Bureau of Standards.

Nature 164, 726-28 (1949)
A 30 million volt synchrotron for medical use.

Nunan, Craig Spencer

Oppermann, Richard H.

Rabinovich, M.

Robinson, C.
Salsig, W. W.

Touschek, B. F.

Wideroe, R.

Wilkins, J. J.

Wilkins, J. J.

Wilkins, J. J.
Ion Sources

Allison, Samuel K.

Atterling, Hugo

Backus, John G. (to U.S. Atomic Energy Commission)

Bailey, Carl, Drukey, D. L., and Oppenheimer, F.

Bayly, A. J., and Ward, A. G.

Bohm, D., et al.

Burcham, W. E.

Burcham, W. E., Paul, E. B., and Jelley, J. V.

Cassignol, Ch.

Ewald, Heinz

Fillmore, Franklin, Hudgins, Arthur, and Jeppson, Morris
Ion source equipment for Berkeley electrostatic generator. Physical Review 73, 534 (1948).

Hall, R. N.
High frequency proton source. Review of Scientific Instruments 19, 905-10 (1948).
Hoyaux, Max, and Dujardin, Ignace
Comparative survey of ion guns. Nucleonics 4, No. 5, 7, and No 6, 12;
and Nucleonics 5, No. 1, 67 (1949).

Jelley, J. V., and Paul, E. B.

Keller, R.

Keller, R.
New source of electrons and its inversion as a source of ions. Helvetica

King, L. D. Percival (to U.S. Atomic Energy Commission)

Kistemaker, I. J., and Dekker, H. L. Douwes
Investigations on a magnetic ion source, I. Physica 16, 198-208 (1950);

Loevinger, Robert (to U.S. Atomic Energy Commission)

Lorrain, P.
New source of electrons and its inversion as a source of ions. Helvetica
Physica Acta 21, 497-98 (1948).

McKibben, J. L.
Focusing ion beams in high gradient tubes. AEC-2475 (LADC-604). Decl.
Feb. 21, 1949. 7 p.

Mills, C. B., Barnett, C. F., and Livingston, R. S.

Murray, Raymond
Methods of study of arc discharges in uniform magnetic fields. Y-632,

Neuert, Hugo
Generation of ionic beams in a high frequency discharge. Zeitschrift
für Naturforschung 3a, 310-12 (1948); Zeitschrift für Naturforschung
4a, 449-55 (1949).

Pachner, Jaroslav
Design of an improved-yield discharge tube. Nucleonics 2, No. 6, 43-51
(1948).

Robinson, Charles F.
Observations on some properties of ultra-high frequency gas discharges.
Rutherglen, J. G., and Cole, J. F.

Setlow, Richard B.
High-current ion source. Review of Scientific Instruments 20, 558-60 (1949).

Stone, Albert M.

Thonemann, P. E., et al.

Wiedenbeck, M. L.
Positive ion gun for the Notre Dame Van de Graaff-Herb generator. AECD-2045 (ANL-HDY-463), 1945. 5 p.

Whitby, H., and Snowden, M.

Woodyard, John R.

Zilverschoon, C. J.
Miscellaneous

The recovery of tritium used in ion accelerators. Atomic Energy Research Establishment, AERE-N/R-494, Mar. 1950. 8 p.

Allison, S. K., et al.

Altar, W., and Garbuny, M.

Baker, Charles P. (to U.S. Atomic Energy Commission)

Baker, W., R., et al.
High voltage pulse transformer designs at the University of California Radiation Laboratory. AECU-304, May 20, 1949. 39 p.

Blewett, J., P.

Bunemann, O.

Carlson, Gosta, and Bartholdson, I.

Cockcroft, J. D., Duckworth, J. C., and Merrison, A. W.
High energy electron accelerators as pulsed neutron sources. Letter in Nature 163, 869 (1949).

Dällenbach, W.
Phase-focusing in linear accelerators and in spiral accelerators. Annalen der Physik, Leipzig (Folge 6) 2, 89-100 (1948). In German.

Gund, K., and Reich, H.

Harris, C. H.
Radiation Laboratory magnet regulators, service and operation. UCRL-520, Nov. 14, 1949. 29 p.
Jones, W. B., et al.

Kerst, Donald, and Serber, Robert (to Board of Trustees of the University of Illinois, Urbana, Illinois)

Lopukhin, V. M., and Ugarov, V. A.

McDaniel, B. D., Lavatelli, L. S., and Graves, E.

McKibben, J. L.

Mjakishev, G. Y.

Motz, H.

Murray, Raymond

Oliphant, M. L.

Pallock, Herbert C., and Westendorp, Willem F. (to General Electric Co., Schenectady, N. Y.)

Richardson, R. E., and Sewell, Duane C.
A device for determining the direction of flux lines in the time varying magnetic field of a particle accelerator. AECU-656 (UCRL-488), Oct. 25, 1949. 6 p.
Svartholm, Nils

Westcott, C. H.

Westendorp, W. F. (to General Electric Co., Schenectady, N. Y.)
PARTICLE ACCELERATORS IN THE UNITED STATES

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Dimensions</th>
<th>Energy (Mev)</th>
<th>Particle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argonne National Laboratory</td>
<td>*Constant frequency cyclotron</td>
<td>60" pole piece dia.</td>
<td>20</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>Tank 7' dia. x 25'long, 15' accelerating tube</td>
<td>1.5</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bartol Research Foundation</td>
<td>Van de Graaff</td>
<td>5' accelerating tube, Tank 4' dia. x 12' long, 200 lbs. pressure</td>
<td>1.8</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>21' accelerating tube, Tank 12' dia. x 35' long, 300 lbs. pressure</td>
<td>5-10</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>Linear Accelerator</td>
<td>1.75' long</td>
<td>1.4</td>
<td>e</td>
</tr>
<tr>
<td>Biochemical Research Foundation (Nswark, Delaware)</td>
<td>Cyclotron¹</td>
<td>38" pole piece dia.</td>
<td>12</td>
<td>d</td>
</tr>
</tbody>
</table>

*Under construction

¹Data from Goldsmith, H. H., List of High Energy Installations, Brookhaven National Laboratory, 1948.
<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Dimensions</th>
<th>Energy (MeV)</th>
<th>Particle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brookhaven National Laboratory</td>
<td>Electrostatic accelerator</td>
<td>8' accelerating tube</td>
<td>2-3</td>
<td>d, p</td>
</tr>
<tr>
<td></td>
<td>Electrostatic accelerator</td>
<td>12' accelerating tube</td>
<td>4</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>*Cyclotron</td>
<td>60' pole piece dia.</td>
<td>20</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>Electrostatic accelerator</td>
<td>3' accelerating tube</td>
<td>2</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>*Proton synchrotron (Cosmotron)</td>
<td>30' orbit radius</td>
<td>2000-3000</td>
<td>p</td>
</tr>
<tr>
<td>University of California</td>
<td>Cyclotron (60")</td>
<td>72' pole piece dia.</td>
<td>9</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>Synchrocyclotron</td>
<td>184' pole piece dia.</td>
<td>350</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>Linear accelerator</td>
<td>40' long</td>
<td>32</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>Synchrotron</td>
<td>1 meter orbit radius</td>
<td>335</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>*Proton synchrotron (Bevatron)</td>
<td>ca 120' pole piece dia.</td>
<td>6440</td>
<td>p</td>
</tr>
<tr>
<td>University of California</td>
<td>*Synchrotron</td>
<td>11.5' orbit radius</td>
<td>70</td>
<td>e</td>
</tr>
<tr>
<td>Medical School</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of California</td>
<td>Cyclotron</td>
<td>37' pole piece dia.</td>
<td>15</td>
<td>p</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Energy (Mev)</td>
<td>Particle</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>----------------------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>California Institute of Technology</td>
<td>Kevatron (Transformer-condenser rectified)</td>
<td>13" tube</td>
<td>0.135</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>Electrostatic generator</td>
<td>5' x 6' tank, 27" tube</td>
<td>0.6</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>Electrostatic generator</td>
<td>8' x 13' tank, 8'6" tube</td>
<td>1.7</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>Electrostatic generator</td>
<td>8' x 22' tank, 9' tube</td>
<td>3</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>*Synchrotron</td>
<td>138" radius</td>
<td>500</td>
<td>e</td>
</tr>
<tr>
<td>Carnegie Institute of Technology</td>
<td>*Synchrocyclotron</td>
<td>141.67" dia.</td>
<td>ca 440</td>
<td>p</td>
</tr>
<tr>
<td>Carnegie Institution</td>
<td>Cyclotron¹</td>
<td>60" pole piece dia.</td>
<td>15</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>Electrostatic generator¹</td>
<td></td>
<td>1</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>Electrostatic generator¹</td>
<td></td>
<td>3.5</td>
<td>p, d</td>
</tr>
<tr>
<td>Case School of Applied Science</td>
<td>Flux-forced field-biased betatron</td>
<td>Radius 17.15 cm</td>
<td>30</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>*Direct voltage accelerator</td>
<td>Length 8'</td>
<td>0.7</td>
<td>p</td>
</tr>
<tr>
<td>Catholic University of America</td>
<td>Electrostatic generator¹</td>
<td></td>
<td>0.5</td>
<td>p, d</td>
</tr>
<tr>
<td>University of Chicago</td>
<td>Synchrocyclotron</td>
<td>170" dia.</td>
<td>500</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Cyclotron¹</td>
<td>32.5" pole piece dia.</td>
<td>8</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>Cockcroft-Walton¹ (being rebuilt)</td>
<td></td>
<td>0.4</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>Betatron¹</td>
<td></td>
<td>50-100</td>
<td>e</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Energy (MeV)</td>
<td>Particle</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------</td>
<td>--------------------------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Columbia University</td>
<td>Cyclotron</td>
<td>36" pole piece dia.</td>
<td>8-10</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>Cyclotron (F.M.)</td>
<td>164" pole piece dia.</td>
<td>385</td>
<td>p</td>
</tr>
<tr>
<td>Cornell University</td>
<td>Synchrotron</td>
<td>1 m orbit radius</td>
<td>300</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Linear Accelerator¹</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyclotron¹</td>
<td>15" pole piece dia.</td>
<td>1,5</td>
<td>d, p</td>
</tr>
<tr>
<td>Duke University</td>
<td>*Van de Graaff</td>
<td>25' tank</td>
<td>4</td>
<td>p, d, a</td>
</tr>
<tr>
<td>El Cerrito High School,</td>
<td>Cyclotron</td>
<td>6" pole piece dia.</td>
<td>1</td>
<td>p</td>
</tr>
<tr>
<td>El Cerrito, California</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Electric Company</td>
<td>6 betatrons</td>
<td>3 - 33" orbit radii</td>
<td>100</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 - 7.5" orbit radii</td>
<td>10</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 - 5.25" orbit radius</td>
<td>20</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>*Cyclotron</td>
<td>60" pole piece dia.</td>
<td>20</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>4 Synchrotrons</td>
<td>3 - 11.5" orbit radii</td>
<td>70</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>(2 under construction)</td>
<td></td>
<td>180</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>8'</td>
<td>2.5</td>
<td>p</td>
</tr>
<tr>
<td>Harvard University</td>
<td>Synchrocyclotron</td>
<td>95" pole piece dia.</td>
<td>125</td>
<td>p</td>
</tr>
<tr>
<td>Hofstra College</td>
<td>*Cyclotron</td>
<td>24" pole piece dia.</td>
<td>ca 6</td>
<td>p</td>
</tr>
<tr>
<td>University of Illinois</td>
<td>Cyclotron¹</td>
<td>47" pole piece dia.</td>
<td>10</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>Betatron¹</td>
<td></td>
<td>22</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Betatron¹</td>
<td></td>
<td>4</td>
<td>e</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Energy (Mev)</td>
<td>Particle</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>University of Illinois (cont.)</td>
<td>Betatron</td>
<td>26 cm orbit radius</td>
<td>80</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Betatron</td>
<td>120 cm orbit radius</td>
<td>340</td>
<td>e</td>
</tr>
<tr>
<td>University of Illinois Medical</td>
<td>Betatron</td>
<td>19.5 cm orbit radius</td>
<td>25</td>
<td>e</td>
</tr>
<tr>
<td>School</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana University</td>
<td>Cyclotron</td>
<td>45" pole piece dia.</td>
<td>11.4</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.7</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22.8</td>
<td>α</td>
</tr>
<tr>
<td>Iowa State College</td>
<td>Transformer-rectifier produced</td>
<td>Tube length ca 60" long</td>
<td>0.325-0.650</td>
<td>p, d</td>
</tr>
<tr>
<td>d.c. potential; linear accelerator</td>
<td>tube</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synchrotron</td>
<td>11.5" orbit radius</td>
<td>70</td>
<td>e</td>
</tr>
<tr>
<td>University of Iowa</td>
<td>Pressurized Van de Graaff</td>
<td>22' accelerator tube</td>
<td>3-4.</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>Voltage multiplier accelerator</td>
<td>5' accelerator tube</td>
<td>0.5</td>
<td>p, d</td>
</tr>
<tr>
<td>Johns Hopkins University</td>
<td>Van de Graaff</td>
<td>6' dia. x 14' long tank,</td>
<td>1.5</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>accelerating tube 7' long</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Kansas</td>
<td>Van de Graaff</td>
<td>Horizontal tank 6' dia. x 14'</td>
<td>2.5</td>
<td>positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>long, 120 psi pressure</td>
<td></td>
<td>ions</td>
</tr>
<tr>
<td>University of Kentucky</td>
<td>Pressurized Van de Graaff</td>
<td>Electrode dia. 48"</td>
<td>1</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accelerating tube length 8'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Alamos Scientific Laboratory</td>
<td>Cyclotron</td>
<td>42" pole piece dia.</td>
<td>10</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td></td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Van de Graaff</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Betatron</td>
<td></td>
<td>20</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>*Betatron</td>
<td></td>
<td>20</td>
<td>e</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Energy (Mev)</td>
<td>Particle</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------</td>
<td>---</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Los Alamos Scientific Laboratory (cont.)</td>
<td>Betatron</td>
<td></td>
<td>14</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Cockcroft-Walton</td>
<td></td>
<td>0.280</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cockcroft-Walton</td>
<td></td>
<td>0.125</td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td>Van de Graaff</td>
<td>2' tube, 2" equipotential module</td>
<td>ca 0.800</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>Standing wave linear electron accelerator</td>
<td>20' long, Guide wave length 10.7 cm</td>
<td>18</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Standard cyclotron</td>
<td>42" pole face</td>
<td>15</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.5</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Synchrotron</td>
<td>1 m orbit radius</td>
<td>340</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Vertical electrostatic</td>
<td>9" accelerating tube</td>
<td>4</td>
<td>positive ions</td>
</tr>
<tr>
<td></td>
<td>generator, pressurized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Van de Graaff</td>
<td>Tank 1' dia. x 32' high 400 psi pressure</td>
<td>2-12</td>
<td>p, d, e</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>Tank 4.5' dia. x 13' high 200 psi pressure</td>
<td>3.5</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>2 Van de Graaff x-ray</td>
<td>Tanks 3' dia. x 6' high 400 psi pressure</td>
<td>2</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>generators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Michigan</td>
<td>*Racetrack synchrotron</td>
<td>40" orbit radius</td>
<td>300</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Cyclotron</td>
<td>42" pole piece dia.</td>
<td>10</td>
<td>d</td>
</tr>
<tr>
<td>University of Minnesota</td>
<td>*Proton linear accelerator</td>
<td>100' long linear acceleration path</td>
<td>66</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>18' dia., 100 psi tank, single electrode</td>
<td>4</td>
<td>singly charged ions</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Energy (Mev)</td>
<td>Particle</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>University of Missouri</td>
<td>Van de Graaff (for demonstration purposes)</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>National Bureau of Standards</td>
<td>Electrostatic 1</td>
<td></td>
<td>1.4</td>
<td>e, p</td>
</tr>
<tr>
<td></td>
<td>*Synchrotron</td>
<td>33" orbit radius</td>
<td>180</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Betatron</td>
<td></td>
<td>50</td>
<td>e</td>
</tr>
<tr>
<td>Naval Ordnance Laboratory</td>
<td>Betatron</td>
<td>5.5" orbit radius</td>
<td>10</td>
<td>e</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>Betatron 1</td>
<td></td>
<td>4</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Betatron</td>
<td>18.5 cm orbit radius</td>
<td>20-22</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>*Synchrotron</td>
<td>77 cm orbit radius</td>
<td>10 (now)</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Cockcroft-Walton - half-wave quadrupler</td>
<td>Accelerator tube 39.25"</td>
<td>0.075-0.250</td>
<td>p, d, a</td>
</tr>
<tr>
<td></td>
<td>*High pressure horizontal</td>
<td>Accelerating tube 175"</td>
<td>5</td>
<td>p, d, a</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>12' accelerating path</td>
<td>4.5</td>
<td>p, d, a</td>
</tr>
<tr>
<td>Northwestern University</td>
<td>*Vertical Van de Graaff, pressurized</td>
<td>12' accelerating path</td>
<td>4.5</td>
<td>p, d, a</td>
</tr>
<tr>
<td>University of Notre Dame</td>
<td>Pressure electrostatic generator, horizontal</td>
<td>40' long x 8' dia. tank</td>
<td>3</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Pressure electrostatic generator, horizontal</td>
<td>6' long x 3' dia. tank</td>
<td>2</td>
<td>e</td>
</tr>
<tr>
<td>Oak Ridge National Laboratory</td>
<td>Van de Graaff</td>
<td>12' accelerator tube</td>
<td>5.7</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>5' accelerator tube</td>
<td>2.7</td>
<td>p, d, and heavier particles</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Energy (Mev)</td>
<td>Particle</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Oak Ridge National Laboratory (cont.)</td>
<td>Cockcroft-Walton</td>
<td>4' accelerator tube</td>
<td>0.400</td>
<td>positive ions</td>
</tr>
<tr>
<td></td>
<td>Cyclotron</td>
<td>44" pole piece dia.</td>
<td>2</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>Cyclotron</td>
<td>86" pole piece dia.</td>
<td>>20</td>
<td>p</td>
</tr>
<tr>
<td>Ohio State University</td>
<td>Betatron¹</td>
<td>5' dia. x 20' long tank</td>
<td>2</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>Horizontal Van de Graaff</td>
<td>Accelerator tube 12' long</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyclotron</td>
<td>42" pole piece dia.</td>
<td>8.5</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.5</td>
<td>³H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>³α</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>²He³</td>
</tr>
<tr>
<td>University of Pennsylvania</td>
<td>Statitron¹ (electrostatic generator)</td>
<td></td>
<td>2-3</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>Betatron¹</td>
<td></td>
<td>22-25</td>
<td></td>
</tr>
<tr>
<td>Picatinny Arsenal</td>
<td>Betatron</td>
<td>7.5" orbit radius</td>
<td>22</td>
<td>e</td>
</tr>
<tr>
<td>University of Pittsburgh</td>
<td>Cyclotron</td>
<td>47" pole piece dia.</td>
<td>8.5</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>³α</td>
</tr>
<tr>
<td>Princeton University</td>
<td>Frequency modulated cyclotron</td>
<td>33" pole piece dia.</td>
<td>18</td>
<td>p</td>
</tr>
<tr>
<td>Purdue University</td>
<td>Microwave linear electron accelerator</td>
<td>3' long</td>
<td>1.5</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Cyclotron</td>
<td>37.5" pole piece dia.</td>
<td>20</td>
<td>³α</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>d</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Energy (MeV)</td>
<td>Particle</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Purdue University (cont.)</td>
<td>Synchrotron</td>
<td>40" orbit radius</td>
<td>300</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>*Microwave linear electron</td>
<td>12' long</td>
<td>4-8</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>accelerator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rice Institute</td>
<td>Van de Graaff, horizontal</td>
<td>14' vacuum tube</td>
<td>2.5</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>pressure tank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Rochester</td>
<td>Cyclotron</td>
<td>26" pole piece dia.</td>
<td>7</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>Synchrocyclotron</td>
<td>130" pole piece dia.</td>
<td>250</td>
<td>p</td>
</tr>
<tr>
<td>Rock Island Arsenal</td>
<td>Betatron</td>
<td>ca 15" orbit dia.</td>
<td>22</td>
<td>e</td>
</tr>
<tr>
<td>Stanford University</td>
<td>Cyclotron</td>
<td>27.75" pole dia.</td>
<td>2.9</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>Linear electron accelerator</td>
<td>14'5" long</td>
<td>6</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>(traveling-wave type)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linear accelerator - Mark II</td>
<td>12' long</td>
<td>35</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>*Linear accelerator - Mark III</td>
<td>220' long (80' now</td>
<td>1,000</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>operating)</td>
<td>(200 now)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Texas</td>
<td>*Van de Graaff</td>
<td>Accelerating tube 10' long</td>
<td>4-5</td>
<td>positive</td>
</tr>
<tr>
<td></td>
<td>Cockcroft-Walton</td>
<td></td>
<td>0.100</td>
<td>ions</td>
</tr>
<tr>
<td>University of Washington</td>
<td>*Cyclotron</td>
<td>60" pole piece dia.</td>
<td></td>
<td>positive</td>
</tr>
<tr>
<td>(Seattle)</td>
<td></td>
<td></td>
<td></td>
<td>ions</td>
</tr>
<tr>
<td>Washington University</td>
<td>Cyclotron</td>
<td>45" pole face dia.</td>
<td>5</td>
<td>d</td>
</tr>
<tr>
<td>(St. Louis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westinghouse Electric Co.</td>
<td>Electrostatic generator</td>
<td>30' accelerating tube</td>
<td>3.7</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65 psi pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Energy (MeV)</td>
<td>Particle</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>---------------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>University of Wisconsin</td>
<td>2 electrostatic generators (one under construction)</td>
<td></td>
<td>4.5</td>
<td>p, d, α</td>
</tr>
<tr>
<td>Yale University</td>
<td>Linear electron accelerator</td>
<td>4' 10.5" long</td>
<td>10-15</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Cyclotron</td>
<td>28" pole piece dia.</td>
<td>8</td>
<td>α</td>
</tr>
<tr>
<td>University of Virginia</td>
<td>Van de Graaff (atomispheric)</td>
<td>5' column</td>
<td>0.4</td>
<td>positive ions</td>
</tr>
<tr>
<td></td>
<td>Resonant cavity linear accelerator</td>
<td>1' length</td>
<td>1</td>
<td>e</td>
</tr>
</tbody>
</table>
Particle Accelerators Outside the United States

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Dimensions</th>
<th>Energy (MeV)</th>
<th>Particle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian National University,</td>
<td>Cyclo-synchrotron</td>
<td>Pole tip diameter 136". Synchrotron orbit 117".</td>
<td>Cyclotron section 200</td>
<td>p, d</td>
</tr>
<tr>
<td>Canberra</td>
<td></td>
<td></td>
<td>Then synchrotron action to 2000</td>
<td></td>
</tr>
<tr>
<td>University of Melbourne</td>
<td>Synchrotron</td>
<td>Orbit radius 7.5 cm</td>
<td>20</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Electrostatic generator</td>
<td>Length of accelerating tube 9'.</td>
<td>1</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>Electrostatic generator</td>
<td>Length of accelerating tube 6'6".</td>
<td>0.8</td>
<td>p, d</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McGill University</td>
<td>Synchrocyclotron</td>
<td>82" pole piece dia.</td>
<td>100</td>
<td>p</td>
</tr>
<tr>
<td>National Research Council</td>
<td>Cockcroft-Walton</td>
<td></td>
<td>0.65</td>
<td>positive ions</td>
</tr>
<tr>
<td>Laboratories, Ottawa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Research Council of</td>
<td>Vertical Van de Graaff</td>
<td>Length of accelerating tube 9', 200 psi, tank 16' high x 6' dia.</td>
<td>5</td>
<td>positive ions</td>
</tr>
<tr>
<td>Canada, Chalk River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive ion accelerator</td>
<td></td>
<td>0.2</td>
<td>positive ions</td>
</tr>
<tr>
<td>Queens University, Kingston, Ont.</td>
<td>Synchrotron</td>
<td>Orbit radius ca 30 cm</td>
<td>75-80</td>
<td>e</td>
</tr>
<tr>
<td>University of Saskatchewan</td>
<td>Betatron</td>
<td>Orbit radius 20 cm</td>
<td>27.5</td>
<td>e</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Energy (MeV)</td>
<td>Particle</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------</td>
<td>-----------------------------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institute of Theoretical</td>
<td>Cyclotron(^1)</td>
<td>36" pole piece dia.</td>
<td>9.5</td>
<td>d</td>
</tr>
<tr>
<td>Physics, Copenhagen</td>
<td>Two electrostatic</td>
<td></td>
<td>1</td>
<td>p</td>
</tr>
<tr>
<td>generators(^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collège de France, Paris</td>
<td>Cyclotron(^1)</td>
<td>31" pole piece dia.</td>
<td>7.5</td>
<td>d</td>
</tr>
<tr>
<td>Commissariat à l'Energie</td>
<td>*Cyclotron</td>
<td>162 cm pole piece dia.</td>
<td>26</td>
<td>d</td>
</tr>
<tr>
<td>Atomique, Laboratoires du</td>
<td></td>
<td>Column length above base plate</td>
<td>3.5-4</td>
<td>p, d</td>
</tr>
<tr>
<td>Fort de Chatillon, Fortenay-</td>
<td>*Van de Graaff</td>
<td>5.85 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aux-Roses, Seine, France</td>
<td></td>
<td>Cavity dia. 92 cm</td>
<td>0.5</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>*Resonant cavity ac-</td>
<td>Accelerating gap 3 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>celerator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratoire de Synthese</td>
<td>Electrostatic(^1)</td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Atomique, Ivry (Seine)</td>
<td></td>
<td></td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrostatic(^1)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>University of Strasbourg</td>
<td>Cockcroft-Walton</td>
<td>Length 6 m</td>
<td>1.5</td>
<td>p, d</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physikalisches Institut der</td>
<td>Van de Graaff</td>
<td>Length 1.4 m</td>
<td>0.5</td>
<td>p, d</td>
</tr>
<tr>
<td>Universität Bonn</td>
<td>Cyclotron(^1)</td>
<td>16" pole piece dia.</td>
<td>2</td>
<td>p</td>
</tr>
<tr>
<td>University of Danzig</td>
<td>Electrostatic(^1)</td>
<td></td>
<td>0.8</td>
<td>e</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Energy (Mev)</td>
<td>Particle</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>Institut für Physik im Max-Planck-Institut für Med. Forschung der Universität Heidelberg</td>
<td>Cyclotron</td>
<td>101 cm (40") pole piece dia.</td>
<td>13</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>Length 3.60 m (12')</td>
<td>1</td>
<td>p, d, e</td>
</tr>
<tr>
<td>Leipzig University</td>
<td>Cyclotron</td>
<td>40" pole piece dia.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megavolt Versuchsanstalt, Wrist</td>
<td>Betatron</td>
<td></td>
<td>15</td>
<td>e</td>
</tr>
<tr>
<td>University of Rostock</td>
<td>Electrostatic</td>
<td></td>
<td>0.9</td>
<td>e</td>
</tr>
<tr>
<td>Siemens-Reiniger-Werke, Erlangen</td>
<td>Betatron</td>
<td>Radius of equilibrium 85 mm</td>
<td>6</td>
<td>e</td>
</tr>
<tr>
<td>*Betatron</td>
<td>Radius of equilibrium 105 mm</td>
<td>12-15</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Great Britain</td>
<td>Associated Electrical Industries, Ltd., Aldermaston</td>
<td>Van de Graaff</td>
<td>Overall length 66"</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>Pressure vessel height 18'6", dia. 6'10.5"</td>
<td>3.1</td>
<td>p, d, a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400 psi, tube length 9'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomic Energy Research Establishment, Harwell</td>
<td>Synchrocyclotron</td>
<td>110" pole piece dia.</td>
<td>175</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>Stack length 9'</td>
<td>2.7</td>
<td>p, d, a</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>Tank 8' x 4', accelerating tube 5" dia., 350 psi</td>
<td>2.3</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>*Cockcroft-Walton</td>
<td>Accelerating tube 6' long</td>
<td>0.6</td>
<td>positive ions</td>
</tr>
<tr>
<td>Travelling-wave linear accelerator (non-feedback type)</td>
<td>Accelerating waveguide 2 m long</td>
<td>3.6</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Energy (Mev)</td>
<td>Particle</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>---</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Harwell, (cont.)</td>
<td>*Travelling-wave linear accelerator (2 stage feedback type)</td>
<td>Each section 3 m long, total 6 m</td>
<td>15</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>*Cockcroft-Walton (Machine for Medical Research Council's Radiobiological unit at Harwell)</td>
<td>Pressure tank ca 3 m high x 2 m dia.</td>
<td>1</td>
<td>positive ions (d)</td>
</tr>
<tr>
<td>University of Birmingham</td>
<td>Fixed frequency cyclotron 61.5" pole piece dia.</td>
<td></td>
<td>9</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>α</td>
</tr>
<tr>
<td>Cambridge University</td>
<td>*Proton synchrotron</td>
<td>15" pole piece dia.</td>
<td>1,300</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td></td>
<td>4-5</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>Cyclotron</td>
<td>37" pole piece dia.</td>
<td>7</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>Phillips</td>
<td></td>
<td>1</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td>Phillips</td>
<td></td>
<td>2</td>
<td>p, d</td>
</tr>
<tr>
<td>University of Edinburgh</td>
<td>*Cockcroft-Walton</td>
<td></td>
<td>1</td>
<td>p, d</td>
</tr>
<tr>
<td>Glasgow University</td>
<td>*Synchrotron</td>
<td>Orbit radius 125 cm</td>
<td>300</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Synchrotron</td>
<td>Orbit radius 10 cm</td>
<td>30</td>
<td>e</td>
</tr>
<tr>
<td>Imperial College of Science and Technology, London University</td>
<td>Pressurized electrostatic generator</td>
<td></td>
<td>ca 2</td>
<td>positive ions and e</td>
</tr>
<tr>
<td>University of Liverpool</td>
<td>*Synchrocyclotron</td>
<td>150" pole piece dia.</td>
<td>400</td>
<td>p, d, α</td>
</tr>
<tr>
<td></td>
<td>Cyclotron</td>
<td>36" pole piece dia.</td>
<td>9</td>
<td>d</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Energy (Mev)</td>
<td>Particle</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>Medical Research Council, Hammersmith Hospital, London</td>
<td>Van de Graaff</td>
<td>Accelerating tube 7'6" long x 10" dia., 10 atm. pressure</td>
<td>2</td>
<td>p, d, e, etc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Linear accelerator</td>
<td>8-10</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corrugated wave guide 3 m long</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Continuous wave cyclotron 45" pole piece dia.</td>
<td>15</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>a</td>
</tr>
<tr>
<td>Metropolitan-Vickers, Ltd.</td>
<td>Betatron</td>
<td></td>
<td>20</td>
<td>e</td>
</tr>
<tr>
<td>High Voltage Laboratory, Manchester</td>
<td>Betatron</td>
<td></td>
<td>30</td>
<td>e</td>
</tr>
<tr>
<td>Oxford University</td>
<td>*Synchrotron</td>
<td>Orbit radius 46.7 cm</td>
<td>140</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Betatron</td>
<td>Orbit radius 20 cm</td>
<td>16</td>
<td>e</td>
</tr>
<tr>
<td>Royal Cancer Hospital, London</td>
<td>Synchrotron</td>
<td>Orbit radius 10 cm</td>
<td>30</td>
<td>e</td>
</tr>
<tr>
<td>Telecommunications Research Establishment (A.E.R.E. Section), Malvern Great</td>
<td>Dielectric loaded traveling linear accelerator without feedback</td>
<td></td>
<td>1.5</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Synchrotron</td>
<td></td>
<td>15</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Synchrotron</td>
<td></td>
<td>30</td>
<td>e</td>
</tr>
<tr>
<td>Italy</td>
<td>Istituto Superiore di Sanità, Rome</td>
<td>Cockcroft-Walton</td>
<td>Length of accelerator tube ca 3.5 m</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>University of Padua</td>
<td>Electrostatic</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Institute for Nuclear Research, Amsterdam</td>
<td>Synchrocyclotron</td>
<td>71" pole piece dia.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>a</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Energy (MeV)</td>
<td>Particle</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>---</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Philips Corp., Eindhoven</td>
<td>Electrostatic</td>
<td></td>
<td>1</td>
<td>p, d</td>
</tr>
<tr>
<td>University of Groningen</td>
<td>Electrostatic</td>
<td></td>
<td>0.3</td>
<td>d</td>
</tr>
<tr>
<td>Norway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Municipal Hospital, Bergen</td>
<td>Electrostatic</td>
<td></td>
<td>1.5</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>*Electrostatic</td>
<td></td>
<td>1.5</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>*Synchrotron</td>
<td></td>
<td>70-80</td>
<td>e</td>
</tr>
<tr>
<td>Norges Tekniske Høgskole, Trondheim</td>
<td>*Van de Graaff</td>
<td>Tank 6.6 m long x 2.35 m dia.</td>
<td>4</td>
<td>p, d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 atm. pressure, accelerating tube 3.6 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Oslo</td>
<td>Neutron generator</td>
<td>Length 50 cm</td>
<td>0.1</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>Length 1.5 m</td>
<td>0.5</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>*Pressure insulated Van de Graaff</td>
<td>Length 3.6 m</td>
<td>4</td>
<td>p, d</td>
</tr>
<tr>
<td>Russia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radium Institute, USSR</td>
<td>Cyclotron</td>
<td>14" pole piece dia.</td>
<td>1.8</td>
<td>d</td>
</tr>
<tr>
<td>Academy of Sciences, Leningrad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physico-technical Institute, USSR Academy of Sciences, Leningrad</td>
<td>Electrostatic</td>
<td></td>
<td>0.7</td>
<td>p</td>
</tr>
<tr>
<td>Physico-technical Institute, Ukrainian SSR Academy of Sciences, Kharkov</td>
<td>Electrostatic</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrostatic</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Energy (MeV)</td>
<td>Particle</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Defense Research Laboratory, Stockholm</td>
<td>Electrostatic generator Pressure insulated (9 atm N₂)</td>
<td>Height of accelerating tube 2.25 m</td>
<td>1.8</td>
<td>p, d</td>
</tr>
<tr>
<td>Nobel Institute for Physics, Stockholm</td>
<td>Cyclotron</td>
<td>32" pole piece dia.</td>
<td>7</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>*Cyclotron</td>
<td>88.5" (225 cm) pole piece dia.</td>
<td>25</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>Cascade generator</td>
<td></td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Royal Institute of Technology, Stockholm</td>
<td>Synchrotron</td>
<td>Orbit radius 20 cm</td>
<td>35</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Betatron</td>
<td>Orbit radius 8.3 cm</td>
<td>5.3</td>
<td>e</td>
</tr>
<tr>
<td>University of Stockholm</td>
<td>Two electrostatic generators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Uppsala</td>
<td>*Synchrocyclotron</td>
<td>230 cm pole face dia</td>
<td>200</td>
<td>p</td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universität Basel</td>
<td>Cascade generator</td>
<td></td>
<td>1</td>
<td>p, d</td>
</tr>
<tr>
<td>Eidgenössische Technische Hochschule, Zürich</td>
<td>Van de Graaff</td>
<td>Length 3 m</td>
<td>1</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>Tensator (Transformer-rectifier)</td>
<td>Length 6 m</td>
<td>2</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>Cyclotron</td>
<td>1 m pole piece dia.</td>
<td>8</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>d</td>
</tr>
</tbody>
</table>

Information Division
scb/6-27-51