Title
CORE PHOTOELECTRON SPECTROSCOPY OF SOME VOLATILE PHOSPHORUS HALIDES

Permalink
https://escholarship.org/uc/item/0mh83101

Author
Cavell, Ronald G.

Publication Date
1975-05-01
CORE PHOTOELECTRON SPECTROSCOPY OF SOME VOLATILE PHOSPHORUS HALIDES

Ronald G. Cavell

May 1975

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Core Photoelectron Spectroscopy of
Some Volatile Phosphorus Halides*

Ronald G. Cavell

Nuclear Chemistry Division
Lawrence Berkeley Laboratory
Berkeley, CA 94720

May 1975

Abstract

Core level (P_{2p}) apparent binding energies of gaseous PF_{5} (144.65 eV), OPF_{3} (143.30 eV), SPF_{3} (142.72 eV), PF_{3} (141.95 eV), OPCl_{3} (141.3 eV), SPCl_{3} (140.8 eV), PCl_{3} (140.1 eV) (vs Ar 2p_{3/2} at 248.62 eV) excited by Mg Kα radiation have been measured. Also measured were F_{1s}, O_{1s}, Cl_{2p}, Cl_{2p}, S_{2p}, S_{2s} and some P_{2s} apparent binding energies on these same compounds. The P_{2p} binding energies display regular trends with respect to formal charge, electronegativity and the relaxation potential model (RPM) utilizing modified CNDO potentials. The CNDO ground potential model (GPM) fails to predict the correct direction of binding energy shifts for OPCl_{3} and SPCl_{3}. The F_{1s} peak of PF_{5} shows evidence for two fluorine atom environments in this molecule.

* The major portion of this work was performed under the auspices of the U.S. Atomic Energy Commission.
Introduction

Core electron binding energy shifts represent changes in molecular potentials arising from chemical bonding. As part of a study of simple phosphorus compounds in the gaseous state we have determined the phosphorus "core level" binding energies (the usual \(P_{2p} \) as well as some \(P_{2s} \)) of a series of halides \(PX_3, OPX_3, SPX_3 \) (\(X=F,Cl \)) and \(PF_5 \). Also included are the core levels \((Cl_{2s} \text{ and } Cl_{2p}, F_{1s}, O_{1s}, S_{2s} \text{ and } S_{2p}) \) of the substituents. The results are given in table 1.

Results and Discussion

It is interesting to note, in contrast to a previous study of solid organo phosphoryl and thiophosphoryl derivatives, that there is a definite decrease in \(P_{2p} \) binding energy upon substitution of sulfur for oxygen in \(EPCl_3 \). Such a change is expected on the basis of Pauling charge or electronegativity correlations as well as more sophisticated analyses and it is surprising that such differences were not observed in the organophosphorus compounds. Variation in sample charging characteristics may explain the lack of observable effect in the previous study and the difference emphasizes the value of making measurements in the gas phase.

In all cases, \(P_{2p} \) and \(P_{2s} \) binding energy differences were relatively constant. Because the former is the stronger and sharper line, measurements of its energy are more reliable, therefore we will discuss binding energy shifts in terms of \(P_{2p} \) values only. It is
interesting to note however that \(P_{2p} \) and \(P_{2s} \) energies are affected equally by valence shell perturbations and that either can be used as a "core level" probe.

In no case were the \(2p_{1/2} - 2p_{3/2} \) doublets of phosphorus resolved with the MgK\(\alpha \) excitation employed although a slightly asymmetric curve was obtained which could be separated into components by curve analysis\(^4\) to yield a doublet spacing of approximately 0.9 eV. The \(2p_{1/2} - 2p_{3/2} \) doublet of Cl was also not resolved although the lines were more asymmetric than those for either phosphorus or sulfur.

As might be expected, \(P_{2p} \) (and \(P_{2s} \)) binding energies increase with oxidation state of phosphorus. Notable also is the greater \(P_{2p} \) binding energy of PF\(_5\) relative to both OPF\(_3\) and SPF\(_3\) although all three compounds have the same formal valence. This difference is expected from simple charge analysis such as that due to Pauling\(^5\) and a plot of the binding energies vs Pauling charge (Fig. 1) yields a smooth curve which connects all points except those of SPC\(_3\) and SPF\(_3\) with a nearly linear correlation existing between PCl\(_3\), OPC\(_3\) and PF\(_3\). The two thiophosphoryl compounds can be placed on the curve only if the ionic character of the \(P=S \) bond is increased to 25% from the accepted value of 10% which is equivalent to increasing the electronegativity of sulfur from the accepted value of 2.75 to a new value of 3.15. While such a revision may be warranted, the present data does not provide sufficient support for such a change and in fact the electronegativity correlation (vide infra) refutes such an adjustment.
A similar correlation of P_{2p} binding energies with the total electronegativity of the substituents on phosphorus, in contrast to the success of this approach in the halogenated methane series6, is successful only within a very limited portion of the series investigated here. For example there is a linear relationship based on the sum of electronegativities of substituents on phosphorus which connects the P_{2p} binding energies of PF_3, OPF_3 and PF_5 (but not SPF_3) and a similar linear relationship connects the total substituent electronegativity with the P_{2p} binding energies of the chlorides PCl_3, OPC_1_3 and SPC_1_3 but the two lines are not coincident. Furthermore, using the higher electronegativity of S (suggested by the charge analysis above) makes the correlations worse, reinforcing our reluctance to revise the electronegativity of sulfur.

The group shift parameters of Hedman et al.7 suffer from the same major deficiency in their inability to correlate fluorides with chlorides and also this system fails to correlate thiophosphoryl halide, SPF_3 and SPC_1_3, P_{2p} binding energies with those of the analogous phosphino and phosphoryl halides containing the same halogen.
Two successful correlations of binding energy with molecular parameters were achieved. A thermochemically based correlation is shown by the relatively good linear relationship between the total atomization enthalpies of the compounds (Table 2) and their P_{2p} binding energies (Fig. 2). The predictive capability of this correlation, as suggested by the relatively large deviations from the straight line, is rather low but it does suggest that appropriate ground state molecular properties may provide a reasonable correlation with binding energies in these compounds. This correlation, which is suggested by the thermochemical scheme of Jolly and Hendrickson and which presumably arises from similar origins, possesses an advantage over the original method since only the heat of formation of the compound and readily accessible atomization enthalpies of the elements involved are required, obviating the need for thermochemical data for the "equivalent core" isoelectronic ion which may be unavailable. It is worth noting that, to date, no experimental enthalpy of formation value is available for SPF_3 and its position on the graph was deduced from an estimated value for this quantity. Thus, even for simple compounds, the requisite thermochemical data may not be available.

The major disadvantage of the atomization enthalpy correlation arises from the fact that it reflects the ground state behaviour of the molecule and does not include the implicit correction for relaxation effects provided by the Jolly and Hendrickson
equivalent core method. Additional investigation of the correlation of binding energies with atomization enthalpies may be warranted in systems such as the present where the lack of data prevents the employment of the equivalent core approach because atomization enthalpies can be obtained from generally available formation enthalpy data and from ab initio calculations. The very limited applicability of this approach is demonstrated by a plot of the atomization enthalpies of some of the halogenated methanes against their Cls binding energies which yields straight lines connecting members in a limited series (e.g. the series CH₄, CH₃F, CH₂F₂ and CF₄ and the series CH₄, CH₃Cl, CH₂Cl₂, CHCl₃ and CCl₄ are linearly interrelated) but the lines have slopes of opposite sense and intersect at the common (CH₄) point. It is therefore not likely that this approach will be applicable to complex molecules.

It was of interest to establish whether the CNDO based ground state (GPM) and relaxation corrected (RPM) potential models, which were rather successful with compounds of the first row elements, could be applied to the present case. The requisite CNDO calculations were performed both with and without "d" orbitals since at first it seemed reasonable to try the more limited basis set covering only the occupied orbitals. The only set of potentials which could be used for prediction of
binding energy shifts were those obtained without "d" orbitals and all predictions are based on the non-"d" set of potentials. Furthermore, although the pp' model12 gave potentials which were in reasonably good agreement with the point charge potentials (in both cases calculated with neglect of "d" orbitals), the former are not strictly correct for the second row elements12 and so all predictions are based on the point charge approximation included in the program.12 The problems which arose with the extended basis set, in particular, difficulties were encountered in obtaining reasonable potentials for the $Z + 1$ ions (required for the relaxation correction) and in achieving convergence in the case of the chloride containing molecules, appear to be computational artifacts. The fact that successful predictions were achieved with neglect of "d" orbitals cannot be taken to suggest that "d" orbital participation in the bonding in these compounds is insignificant and we would not wish to make any such implication because the CNDO/2 computation is used herein (in a point charge approximation) to perform a rather elaborate electrostatic calculation of atomic potentials and not to derive \textit{ab initio} quality results.
Even although the point charge potentials obtained with neglect of "d" orbitals could be used to predict binding energy shifts, the predictions provided by the GPM or the RPM models11, in general, overestimated the magnitudes of the shifts. Furthermore, applying the GPM model with this non-"d" point charge potentials set resulted in the prediction of binding energy shifts of OPCI\textsubscript{3} and SPCI\textsubscript{3} (relative to the arbitrary PF\textsubscript{3} reference) in the opposite sense to the observed shift. The RPM model gave, with the same non-"d", point charge set of potentials, the correct signs (but overly large magnitudes for these same relative shifts) emphasizing, as before11,13, the importance of adiabatic electron reorganization ("relaxation") effects (which are included in the RPM treatment and neglected in the GPM treatment) in the prediction of binding energy shifts.

Much improved prediction of the binding energy shifts can be achieved if we recognize that the CNDO/2 computation assigns \(n = 2 \) and \(n = 1 \) quantum shell electron density to the core charge and thus assigns a constant potential to the electrons within the "core" shells which appears to be overestimated. True Hartree-Fock potentials for the \(n = 2 \) electrons will however be different from the nuclear potentials and an appropriate value appears to be about one-half the nuclear potential.14,15 Accordingly the CNDO/2 computed point charge potentials (neglecting "d" orbitals) were divided by 2 and the resultant values used to calculate binding energy shifts relative to PF\textsubscript{3} as the arbitrary standard.
With these modified potentials the GPM approach continues to predict shifts for OPCl$_3$ and SPCl$_3$ which are in the opposite direction to those observed. The RPM approach (Fig. 3) gave excellent agreement, as shown by the correspondence to a line of unit slope, with the largest deviation (0.35 eV) being exhibited by SPCl$_3$. The failure of the GPM approach to predict correct signs for shifts of OPCl$_3$ and SPCl$_3$ as before again emphasizes the need for relaxation corrections in order to compare molecules of different size. The larger deviations exhibited by Cl and S compounds may indicate that the approach is still inadequate.

Estimates of relaxation contributions based on the modified potentials are given in Table 3. If the numerical values correctly indicate the trends of relaxation energies then it is clear that they change substantially throughout the series (the maximum change being about 20%) and that the relaxation contribution is larger for chlorides than fluorides in keeping with the greater number of electrons in molecules containing the former and the greater polarizability of chlorides.
An additional feature of note in the present set of results is the observation of a broad and unsymmetrical \(F_{1s} \) line for \(\text{PF}_5 \) in contrast to the narrower, symmetric, \(F_{1s} \) lines obtained from \(\text{PF}_3 \) and \(\text{OPF}_3 \). Good fit was achieved with two Gaussian components with an intensity ratio of 3:2 which are separated by 1.20 eV (see figure 5). The linewidths of the two components (which were defined to be equal in the fitting procedure) are similar to those experimentally obtained for \(\text{PF}_3 \) and \(\text{OPF}_3 \) suggesting that each \(F_{1s} \) component in \(\text{PF}_5 \) arises from a chemically distinct fluorine type. 16 The two components are reasonably assigned to equatorial and axial fluorine atoms in keeping with the established trigonal bipyramidal molecular structure of \(\text{PF}_5 \). 17 That the greater component (3 units) which arises from the equatorial fluorine atoms lies to higher binding energy of the lesser intensity (2) component due to the axial fluorine atoms is consistent with the shorter P-F bond distance (and therefore stronger binding) in the equatorial plane. Recent calculations 18 on \(\text{PF}_5 \) and related molecules confirm the expectation of stronger and shorter equatorial bonds.

Experimental

Any physical study of reactive fluorides requires extensive precautions to ensure that hydrolysis of the compound does not occur. The present measurements were done
with commercial samples of PF$_3$, OPF$_3$ and PF$_5$ each having a purity greater than 98% (as determined by infrared spectroscopy). The gases were introduced into the gas sample cell of the Berkeley iron-free spectrometer19 through stainless steel tubing which had been baked (200°C) under vacuum and then repeatedly flushed with the fluorides in order to remove all traces of moisture before establishing the sample flow. The chlorides were also commercial materials and were introduced as gases into the supply lines which had been previously exposed to the fluorides and so were probably free of traces of moisture. The spectra were measured at pressures of the order of 5 x 10$^{-2}$ torr. and were calibrated by introducing, simultaneously with the compound, an approximately equal pressure of gaseous Ar(2p$_{3/2}$ = 248.62 eV)20 with known binding energy. Line widths given as FWHM in Table 1 were determined on data obtained in the absence of calibrant. The raw data, obtained on a momentum base, was converted to a linear kinetic energy scale and the corrected data fitted to a Gaussian line shape by an iterative non-linear least squares curve fitting programme4. Additional support for the validity of the PF$_5$ F(ls) data is provided by the reproducibility of the asymmetric line shape over several determinations on different occasions suggesting that impurity or decomposition is not responsible for the two component F(ls) line. Furthermore the F(ls) spectrum
did not change with time and, finally, monitoring the O(1s) region during accumulation of F(1s) data for PF$_5$ showed that no significant concentration of OPF$_3$ was present. Lineshapes for F$_{1s}$ of OPF$_3$ and PF$_3$ were symmetric which supports the proposal of two F$_{1s}$ components in PF$_5$.

Data for SPF$_3$ and some of the other compound mentioned herein were obtained on a McPherson ESCA-36 photoelectron spectrometer using similar precautions to those described above to prevent hydrolysis in the sample handling system. The data, obtained in this case on a linear kinetic energy scale, was analyzed in a similar fashion to the above, using a modified version of the same least squares fitting programme.

Acknowledgements

I am indebted to Dr. J.M. Hollander and Dr. D.A. Shirley of the Lawrence Berkeley Laboratory for the use of facilities and for their generous hospitality; to Drs. Neil Bartlett and C.J. Adams for assistance with the infrared measurements and to the University of Alberta for generous sabbatical leave and financial support.
*Supported in Part by the U.S. Atomic Energy Commission.

1. On leave from the University of Alberta, Edmonton, Canada (July 1971-July 1972).

4. Developed by C. Lederer, Lawrence Berkeley Laboratory (The functions are described in ref. 19).

10. J.A.N.A.F. Thermochemical tables (plus supplementaries)

12. Calculated potentials were obtained with CNDO/2 obtained from the Quantum Chemistry Program exchange and modified as described in ref. 11.
 (c) The modified X-ray tube is described by D.W. Davis, Ph.D. Thesis, Berkeley (1973) (Report LBL - 1900 (1973)).
TABLE 1

CORE ELECTRON BINDING ENERGIES OF PHOSPHORUS COMPOUNDS

<table>
<thead>
<tr>
<th></th>
<th>P2p</th>
<th>P2s</th>
<th>F1s</th>
<th>O1s</th>
<th>Cl2p</th>
<th>Cl2s</th>
<th>S2p</th>
<th>S2s</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF3</td>
<td>141.95(1.68) c,d</td>
<td>199.6(2.50)</td>
<td>694.2(1.59)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OPF3</td>
<td>143.30(1.74) d</td>
<td>n.i.</td>
<td>695.8(1.59)</td>
<td>539.3(1.32)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>170.3e(2.39) 234.2e(2.9)</td>
</tr>
<tr>
<td>SPF3</td>
<td>142.72e(2.16) d</td>
<td>199.75e(2.80)</td>
<td>694.9e(1.81)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PF5</td>
<td>144.65(1.70) d</td>
<td>n.i.</td>
<td>694.9(2.25) f</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PCl3</td>
<td>140.1g(1.64) d</td>
<td>198.1(2.6)</td>
<td>-</td>
<td>-</td>
<td>206.6e(2.75d) 278.2e(2.7d)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OPC13</td>
<td>141.3g(1.69) d</td>
<td>198.8(2.52)</td>
<td>-</td>
<td>538.1(1.21)</td>
<td>207.4e(2.6d) 278.2e(3.0d)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SPC13</td>
<td>140.8g(1.62) d</td>
<td>198.1(2.79)</td>
<td>-</td>
<td>-</td>
<td>206.5e(2.6d) 277.6e(2.8d)</td>
<td>169.2g(2.2d) 233.2e(2.9)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(a) *vs* Ar 2P3/2 248.62 eV14. Values are estimated to be accurate to ±0.2 eV. n.i. = not investigated.
(b) FWHM given in brackets obtained by Gaussian analysis.
(c) Separable by curve analysis into 2P1/2, 2P3/2 components of 0.93 eV FWHM with energies of 141.04 and 141.97 eV respectively.
(d) FWHM given includes both 2P1/2 and 2P3/2 components which were not experimentally resolved.
(e) Value obtained only at the University of Alberta with a McPherson ESCA-36 spectrometer.
(f) Average value. Gaussian analysis of the asymmetric peak gave two components of equal (fixed) FWHM (1.66 eV) with energies 695.4 (intensity 3) and 694.2 (intensity 2) eV respectively assigned to equatorial and axial fluorine environments.
(g) Values obtained recently at the University of Alberta on this compound agree within 0.1 eV.
TABLE 2

FORMATION AND ATOMIZATION ENTHALPY DATA

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\Delta H_f) (^a) (kcal)</th>
<th>(\Delta H_{\text{atom}}) (^e) (kcal)</th>
<th>(E_B) (P(2p)) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF(_5)</td>
<td>-380.8 (^b)</td>
<td>363.68</td>
<td>144.65</td>
</tr>
<tr>
<td>OPF(_3)</td>
<td>-282</td>
<td>476.4</td>
<td>143.30</td>
</tr>
<tr>
<td>SPF(_3)</td>
<td>-250 (^c)</td>
<td>451.7</td>
<td>142.72</td>
</tr>
<tr>
<td>PF(_3)</td>
<td>-228.8 (^d)</td>
<td>551.9</td>
<td>141.95</td>
</tr>
<tr>
<td>PC(_1)</td>
<td>-61.0</td>
<td>227.6</td>
<td>140.1</td>
</tr>
<tr>
<td>OPC(_1)</td>
<td>-128.7</td>
<td>354.8</td>
<td>141.3</td>
</tr>
<tr>
<td>SPC(_1)</td>
<td>-86.8</td>
<td>320.0</td>
<td>140.8</td>
</tr>
</tbody>
</table>

(a) Most values taken from Ref. 10.

(c) Estimated value (Ref. 10)

(e) Atomic \(\Delta H_{f}^{298} \) values used to calculate atomization enthalpies are Cl(28.92), S(66.68), P(79.8), F(18.36), O(59.56) kcal/mole and were also taken from the JANAF Tables. (Ref. 10)
TABLE 3

<table>
<thead>
<tr>
<th>MODIFIED CENTRAL ATOM POTENTIALSa</th>
<th>RELAXATION ENERGYb</th>
<th>CALCULATED ΔE_R</th>
<th>$\Delta E_B^{c,d}$</th>
<th>EXPTL ΔE_B^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>V'_Z</td>
<td>V'_{Z+1}</td>
<td>E_R</td>
<td>ev</td>
<td>ev</td>
</tr>
<tr>
<td>PF$_3$</td>
<td>33.42</td>
<td>41.63</td>
<td>4.10</td>
<td>0</td>
</tr>
<tr>
<td>OPF$_3$</td>
<td>32.20</td>
<td>40.41</td>
<td>4.10</td>
<td>0</td>
</tr>
<tr>
<td>SPF$_3$</td>
<td>32.06</td>
<td>40.93</td>
<td>4.44</td>
<td>0.34</td>
</tr>
<tr>
<td>PF$_5$</td>
<td>30.84</td>
<td>39.48</td>
<td>4.32</td>
<td>0.22</td>
</tr>
<tr>
<td>PCl$_3$</td>
<td>34.20</td>
<td>44.64</td>
<td>5.22</td>
<td>1.12</td>
</tr>
<tr>
<td>OPOCl$_3$</td>
<td>32.99</td>
<td>43.36</td>
<td>5.19</td>
<td>1.08</td>
</tr>
<tr>
<td>SPCl$_3$</td>
<td>32.93</td>
<td>43.68</td>
<td>5.37</td>
<td>1.26</td>
</tr>
</tbody>
</table>

(a) Calculated CNDO/2 (point charge) potentials12 for phosphorus (Z) and the equivalent core (Z+1) ion have been divided by 2.

(b) $E_R = 1/2(V'_{Z+1}-V'_Z)$

(c) Relative to PF$_3$ values; calculated as $\Delta X = X(\text{compound}) - X(\text{reference})$

(d) $\Delta E_B^{GPM} = -\Delta V'_Z$

(e) $\Delta E_B^{RPM} = -\Delta V'_Z - \Delta E_R$
Figure 1. Correlation of P_{2p} binding energies with Pauling charge.
Figure 2. Comparison of P_{2p} apparent binding energy in eV with ΔH atomization (kcal) of the phosphorus halides. The data used to prepare the plot is given in Table 2. The square symbol used for SPF$_3$ serves to emphasize the use of an estimated ΔH° value for that compound.
Figure 3 Comparison of experimental P_{2p} binding energy shifts (relative to PF_3) with Relaxation corrected calculated values. Note that the straight line has been constrained to unit slope. The CNDO/2 potentials used to calculate ΔE_B were divided in half before application of the RPM equations. The data used to prepare the plot is given in Table 3 and the open circle signifies that the data for SPF_3 was obtained only at the University of Alberta on a McPherson ESCA-36 photoelectron spectrometer, all other data was obtained on the Berkeley iron-free instrument.
Figure 4 F_{1s} peak of PF$_5$ decomposed into two Gaussian components with equal (fixed) FWHM of 1.66 eV and fixed intensity ratio of 3:2. The experimental points are designated (+) and the solid lines represent the component and total calculated curves. The two components have apparent binding energies of 695.4 and 694.2 eV, with the more intense appearing to higher binding energy, for a separation of 1.2 eV. The weighted average F$_{1s}$ apparent binding energy is 694.9 eV.
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.