Lawrence Berkeley National Laboratory
Recent Work

Title
TRANSPORTABLE CHARGE IN A PERIODIC ALTERNATING GRADIENT SYSTEM

Permalink
https://escholarship.org/uc/item/0mp002bm

Authors
Lee, E.P.
Fessenden, T.J.
Laslett, L.J.

Publication Date
1985-05-01
TRANSPORTABLE CHARGE IN A PERIODIC ALTERNATING GRADIENT SYSTEM

E.P. Lee, T.J. Fessenden, and L.J. Laslett

May 1985

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks.

Presented at the 1985 Particle Accelerator Conference, Vancouver, B.C., Canada, May 13-16, 1985

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
TRANSPORTABLE CHARGE IN A PERIODIC ALTERNATING

GRADIENT SYSTEM*

E.P. Lee, T.J. Fessenden and L.J. Laslett

University of California
Lawrence Berkeley Laboratory
One Cyclotron Road
Berkeley, CA 94720

May 1985

*This work was supported by the Office of Energy Research, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
TRANSPORTABLE CHARGE IN A PERIODIC ALTERNATING GRADIENT SYSTEM

E.P. Lee, T.J. Fessenden and L.J. Laslett
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

Abstract

A simple set of formulas is derived which relate emittance, line charge density, matched maximum and average envelope radii, occupancy factors, and the (space charge) depressed and vacuum values of tune. This formulation is an improvement on the smooth limit approximation; deviations from exact (numerically determined) relations are on the order of ±2%, while the smooth limit values are in error by up to ±30%. This transport formalism is used to determine the limits of transportable line charge density in an electrostatic quadrupole array, with specific application to the low energy portion of the High Temperature Experiment of Heavy Ion Fusion Accelerator Research. The line charge density limit is found to be essentially proportional to the voltage on the pole faces and the fraction of occupied aperture area. A finite injection energy (≥ 2 MeV) is required to realize this limit, independent of particle mass.

Introduction

For the design of the Multiple Beam Experiment (MBE-4) [1], the High Temperature Experiment (HTE) [2] and a heavy ion ICF driver it is not only necessary to determine the matched beam envelope functions for particular parameters, but also to provide accurate scale relations, particularly for those parameters relating to physically limiting features of the transport lattice. In general, an exact evaluation of the envelope functions may be obtained from the solution of the nonlinear envelope equation (including space charge) if the Kapchinski-Vladimirskij distribution [3] in transverse phase space is assumed. This has been found to be an adequate theoretical basis for design of a transport system, but it is too cumbersome for parametric display and scaling. The well-known continuous limit formulation [4] does yield useful relations between emittance, line charge density and mean radius but they are inaccurate, contain no detail of the focal lenses, and make no prediction of the maximum beam radius. These deficiencies of the continuous limit formulas are remedied in an improved approximate calculation described here, while retaining the desired simplicity of form and explicit scaling of the continuous limit.

Method of Calculation

The improved approximation of the envelope functions is based on an evaluation of the transfer matrix [M] for a full lattice period of length 2L. This matrix is the product of the simple matrices which represent lenses and drifts in the absence of space charge forces. Additional defocusing (thin) lenses representing the effect of space charge are placed in the middle of the drifts. At these mid-points the space charge force is close to its average for the full lattice period and can be evaluated using the matched envelope radius (a) at the midpoints, which is the same for x and y. Thus there is a kick representing the charge effect for a half period:

\[\Delta x = \frac{Q}{a} x , \]

where Q is a dimensionless measure of the particle line charge \(\lambda_0 \):

\[Q = \frac{2a^2}{r^2} \frac{l_0}{4 \pi e_0} \frac{Z^2 (l_0)}{T} \left(\frac{\lambda_0}{\lambda_0} \right) (NR) . \]

Standard relations between envelope functions and elements of [M] are employed [5]. The cosines of the normal and depressed tunes (\(\phi_n \) and \(\phi_p \)) are determined from the trace of [M], and the ratio \(\frac{L^2}{2} (\sin \theta) / \epsilon \) where \(\epsilon \) is unnormalized emittance, is given by the component \(M_{12} \). The maximum radius (\(a_{mp} \)) appears at the center of a focal quadrupole and is determined using the components \(m_{11} \) and \(m_{12} \) from the transfer matrix [M] evaluated between the lens center and drift center. In the consideration of finite lens length (nL) and symmetric treatment of charge this formulation improves on the similar results derived by Keefe [6]. The four derived relations essentially relate \(a_m, \sigma \) and \(\sigma_0 \) to the fundamental quantities \(n, L, \epsilon, \sigma, \) 0, and quadrupole strength \(k \):

\[k = \frac{|R^1 + E^1/\nu|}{8P} \frac{L^2}{2^7} \left(\frac{\nu}{|R|} \right) (NR, ES) . \]

In order to simplify the derived relations all trigonometric functions are expanded in the dimensionless lens strength (\(\pi \sqrt{1}L \)), keeping only lowest order non-trivial contributions to the envelope functions. A highly accurate value of \(\sigma_0 \) (±1% error) and reasonably accurate expressions for the other quantities (±5% error) are thereby obtained. To improve accuracy two further steps are taken. First, in the evaluation of [M], a space charge kick of one quarter the magnitude of Eq. (1) is inserted at both the lens center and drift center, this being a more symmetric application. Second, the coefficient of \(1^2 \) in the formula for \(\cos \sigma \) [Eq. (5)] is corrected (from 1/8 to 1/6) to agree with the exact envelope results which can be derived in the limit \(\epsilon = 0, \sigma = 0 \). This is a natural modification of the basic calculation since the use of thin lenses to represent charge inevitably lead to errors in terms of second order in line charge (\(\propto \Gamma \)).

Summary of Relations

The four lattice and envelope relations we have derived are conveniently written as follows:

\[\cos \sigma_0 = 1 - \frac{(3-2a)_n^2}{6} x^2 L^4 , \]

\[\cos \sigma - \cos \sigma_0 = \Gamma \left[1 - \frac{5 \pi}{20} (1 - \cos \sigma_0) \right] \]

\[+ \frac{L^2}{6} \left[1 - \frac{15 - 7a}{120} (1 - \cos \sigma_0) \right] \]

\[\frac{a^2}{2 L} \sin \sigma = \frac{3}{2} \frac{\lambda_0}{\lambda_0} (\cos \sigma - \cos \sigma_0) . \]

This was supported by the Office of Energy Research, Office of Basic Energy Sciences, U.S. Department of Energy under Contract DE-AC03-76SF00098.
Here we have defined

$$\Gamma = \frac{2L^2\eta}{\alpha^2}.$$ \hspace{1cm} (8)

The predictions of these formulas are compared with exact results in Table 1.

Typically, in using these relations a set of constraints is specified. For example the ratio of maximum beam radius to aperture radius (a_m/b) and ratio of half period to aperture (L/b) may be bounded. For the example given below we also specify a maximum voltage on pole faces

$$\eta(b) = \frac{E_b^2}{2},$$ \hspace{1cm} (9)

which must be less than or on the order of 50 kV to avoid electrical breakdown.

Space Charge Limit

Equations (4)-(7) are readily solved for Γ with $\alpha = 0, \eta = 0$, and a given value of σ_0. For the conservative value $\sigma_0 = 60^\circ$, which avoids space charge induced instabilities [7], and $\eta = 1/2$ we find

$$\Gamma = .516,$$

$$a_m/\alpha = 1.25,$$

$$KL^2 = 2.45.$$ \hspace{1cm} (10c)

Using these values, the particle energy and particle line charge may be written

$$T = (1.08) \left(\frac{L}{b}\right)^2 \frac{2\pi \eta(b)}{\epsilon} (eV)$$ \hspace{1cm} (11)

$$\lambda_0 = 1.85 \times 10^{-11} \frac{L^2 \eta(b)}{2\pi\epsilon} \left(\frac{a_m}{b}\right)^2 (C/m)$$ \hspace{1cm} (12)

If we allow as a maximum quadrupole voltage $\eta(b) = 50$ kV and aperture fill factor $a_m/b = .5$, then $\lambda_0 = .0943 \mu C/m$. More generally

MAXIMUM TRANSPORTABLE CHARGE

![Graph showing dependence of maximum transportable charge per meter on beam energy for various lattice tunes σ_0 (in degrees) and quadrupole voltages η (in kV) for $\eta = 1/2$. L/b = 10, and $a_m/b = .5$.](image)

Table 1. Comparison of approximate and exact relations. The rhs of Eqs. (4)-(7) is computed for a range of depressed tunes. The value paired immediately below is the exact value. For this study we have set $\eta = 1/2$ and $\sigma_0 = 60^\circ, 90^\circ$. The values of σ given in column 1 are exact (numerical), corresponding to the given values of Γ.

<table>
<thead>
<tr>
<th>Given Parameters</th>
<th>$\cos \sigma$</th>
<th>$-\cos \sigma$</th>
<th>$\frac{a_m^2}{2\epsilon L}$</th>
<th>a_m/α</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{K}L = 1.5661$</td>
<td>60.085</td>
<td>60.000</td>
<td>.0000</td>
<td>.8875</td>
</tr>
<tr>
<td>$\Gamma = .00000$</td>
<td>($\sigma = 60^\circ$)</td>
<td>.0000</td>
<td>.8921</td>
<td>1.269</td>
</tr>
<tr>
<td>$\Gamma = .43003$</td>
<td>($\sigma = 24^\circ$)</td>
<td>.4110</td>
<td>1.024</td>
<td>1.250</td>
</tr>
<tr>
<td>$\Gamma = .50741$</td>
<td>($\sigma = 6^\circ$)</td>
<td>.4912</td>
<td>1.049</td>
<td>1.246</td>
</tr>
<tr>
<td>$\sqrt{K}L = 1.8636$</td>
<td>90.297</td>
<td>90.000</td>
<td>.0000</td>
<td>.77500</td>
</tr>
<tr>
<td>$\Gamma = .00000$</td>
<td>($\sigma = 90^\circ$)</td>
<td>.0000</td>
<td>.7841</td>
<td>1.430</td>
</tr>
<tr>
<td>$\Gamma = .57337$</td>
<td>($\sigma = 60^\circ$)</td>
<td>.4939</td>
<td>.9478</td>
<td>1.388</td>
</tr>
<tr>
<td>$\Gamma = 1.0323$</td>
<td>($\sigma = 12^\circ$)</td>
<td>.9606</td>
<td>1.086</td>
<td>1.355</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The particle energy required to realize this limit is

\[T = (2.04 \text{ MeV}) \left(\frac{L}{10b} \right)^2 \frac{\phi(b)}{50 \text{ kV}}. \]

Since aspect ratio \(L/b \) conservatively is taken greater than \(-10\) to avoid field nonlinearities, an injection energy of at least 2 MeV is required to realize the space charge limit of Eq. (13). Higher injection energy requires increased \(L/b \) to avoid a reduction of \(\sigma_\phi \). Lower injection energy requires reduced \(\phi(b) \) and \(\lambda_0 \) is reduced from the given limit. Specific examples are the HTE injection scheme, which approaches the space charge limit \(T = 2 \text{ MeV}, \lambda_0 = .075 \mu C/m \), and the MBE-4 injector which operates with \(\lambda_0, \phi(b), \) and \(T \) about one order of magnitude lower. The relationship of these quantities is displayed in Fig. 1.

The authors would like to acknowledge the considerable aid given by Dr. Lloyd Smith in arriving at accurate envelope functions.

References

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.