Title
DIRECTION OP NUCLEAR MAGNETIC RESONANCE IN A 235 nSEC NUCLEAR STATE BY PERTURBED ANGULAR CORRELATIONS

Permalink
https://escholarship.org/uc/item/0nb226vh

Authors
Matthias, E.
Shirley, D.A.
Klein, M.P.
et al.

Publication Date
1966-04-01
DETECTION OF NUCLEAR MAGNETIC RESONANCE IN A 235 nSEC NUCLEAR STATE BY PERTURBED ANGULAR CORRELATIONS
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
DETECTION OF NUCLEAR MAGNETIC RESONANCE IN A 235 nSEC
NUCLEAR STATE BY PERTURBED ANGULAR CORRELATIONS

E. Matthias, D. A. Shirley, M. P. Klein, and N. Edelstein

April 1966
DETECTION OF NUCLEAR MAGNETIC RESONANCE IN A 235 nSEC NUCLEAR STATE BY PERTURBED ANGULAR CORRELATIONS

E. Matthias, D. A. Shirley, M. P. Klein, and N. Edelstein

Lawrence Radiation Laboratory
Department of Chemistry and Laboratory of Chemical Biodynamics,
University of California
Berkeley, California
April 1966

We have observed resonant rf absorption by 10^4 nuclei in the 74.8-keV excited state of Rh100 by combining nuclear magnetic resonance in a ferromagnet with perturbed angular correlations (PAC) of the 84.0-74.8 keV-\gamma-ray cascade.\(^1\) The 4-day isotope Pd100, which was diffused into a nickel foil, fed the cascade via electron-capture decay, maintaining an average of 0.006 nuclei in the 74.8-keV state during the experiment. A total of 2.8×10^6 coincidences were recorded by two 3-in x 3-in NaI(Tl) counters at 180°, while the sample was polarized in a field of 100 gauss along the counter axis. Perpendicular to the DC field an oscillating field of 3 gauss was stepped through the frequency range 289.5-355.5 MHz. Resonant absorption was detected by a drop in the coincidence rate centered about 322.5 MHz, as shown in Fig. 1.

The method of PAC has for sometime provided the only way to measure precession frequencies in short-lived nuclear states, with lifetimes in the range 10^{-11} sec $< \tau < 10^{-6}$ sec. Time-differential PAC\(^3\) and more recently the digital analysis method (DAPAC)\(^4\) have raised the upper limit on lifetimes available to at least 10^{-3} sec and have greatly improved the accuracy possible with PAC. Still it is desirable to develop a method that combines the precision of NMR with the extremely high sensitivity of PAC in order to enjoy the advantages of both methods.
Aragam and Pound discussed the possibility of detecting resonant absorption in a short-lived nuclear state by observing the angular-correlation anisotropy as early as 1953. They formulated the conditions for such an experiment:

1. The splitting of the substates should be large compared to the natural nuclear linewidth; i.e., \(\omega_L / \tau_N \gg 1 \), where \(\omega_L \) and \(\tau_N \) are, respectively, the Larmor frequency and the nuclear lifetime.

2. The rf field, \(H_1 \), must have sufficient amplitude to induce transitions in each nucleus in times of the order of the nuclear lifetime, \(\gamma H_1 \sim \tau_N^{-1} \), where \(\gamma \) is the nuclear gyromagnetic ratio.

3. Other time-dependent interactions should be minimal, so that the nuclear spin-correlation time \(\tau_c \) is of the order of the lifetime, \(\tau_c \sim \tau_N \).

These conditions, especially (2), turn out to be very stringent when applied to the PAC sources that have been studied, and the resonance experiment has generally not been considered feasible.

The effective rf field, \(H_1^{\text{eff}} \), may be greatly enhanced by performing the resonance experiment on an atom embedded in a ferromagnetic lattice. The enhancement arises through the hyperfine field \(H_{hf} \), giving

\[
2 H_1^{\text{eff}} = (1+H_{hf}/H_0)H_1,
\]

where \(H_0 \) is the DC polarizing field. Thus, for the parameters that apply to our experiment, \(H_0 = 100 \text{G} \) and \(H_{hf} = 2 \times 10^5 \text{G} \), and the applied rf field is amplified by \(10^3 \).

Rhodium-100 was chosen for this experiment because it is a well-understood case with a long lifetime and a large g-factor, and because hyperfine fields of the order of \(10^5 \) gauss are expected for Rh dissolved
in the 3d ferromagnets. We selected a Ni lattice because nickel foil of the requisite thickness (10^{-4} cm = skin depth at 300 MHz) was available. In a recent study of the temperature-dependence of H_{hf} for Ru in Ni it was found that the ratio $H_{hf}(295^\circ K)/H_{hf}(0^\circ K) = 0.80$; combining this with the value $H_{hf}(Rh in Ni, 0^\circ K) = -250$ kG predicted from systematics, we expected $H_{hf}(Rh in Ni, 295^\circ K)$ to have the magnitude 200 kG. This determined the frequency range selected for searching.

The essence of the experiment is very simple. The magnetization direction of the foil serves as the quantization axis and the propagation direction of the γ rays that were detected (the σ components, corresponding to $\Delta m_\gamma = \pm 1$). For a coincidence to be recorded, σ components of the two transitions had to be registered within 1 usec in the two counters, thus ensuring high probability (about 90%) that they were from the same nucleus. The coincidence counting rate under the experimental conditions varies with the angle θ between the propagation directions of γ_1 and γ_2 as $1 + 0.2 P_2(\cos \theta)$ so with $\theta = 180^\circ$ the coincidence rate is 20% larger than "average". This may be regarded as arising from the selection by the first counter, of a certain population distribution of nuclei in the 74.8-keV state that are candidates for coincidence (i.e., those that arrived in the 74.8-keV state via a σ transition). Radiation at the resonant radio frequency tends to randomize this population, thus lowering the coincidence counting rate. This is illustrated in Fig. 2, which shows rf transitions driving a nucleus that would have emitted a $\gamma_2 \sigma$ component into a substate from which it may instead emit a π component.

Two features of Fig. 1 require comment. First, the absorption is small, of the order of 2% rather than 20%, and secondly the linewidth is
approximately 20 MHz, or about seven natural linewidths. These two features probably arise from the same cause, and were anticipated, because it has been found that the time-dependent correlation pattern of Ru99 in Ni loses coherence in $\sim 5 \times 10^{-8}$ sec. Such behavior could be the result of fluctuating local moments,8 of quadrupole interaction, or simply of the existence of different magnetic sites. This point will be explored further. The fact that we can detect resonance in spite of this problem indicates that this type of experiment is feasible for shorter-lived states.

Comparison of the resonant frequency of 322.5 ± 3 MHz with the g-factor, $+2.151 \pm 0.004,$4 yields for H_{hf} (Rh in Ni, 290 K) a value of 197 ± 2 kG. This is in excellent agreement with the trends in this region, and quite close to the predicted value. The temperature dependence of H_{hf} is under further study. The sign of H_{hf} can be determined by radiating with circularly polarized rf radiation.

The combination of PAC and NMR should provide a method for investigating hyperfine interactions in short-lived excited nuclear states, in particular for levels with lifetimes between 10^{-6} and 1 sec, which are not accessible to other methods. For the longer lifetimes ferromagnetic enhancement should be unnecessary. For longer-lived states one has to produce the nuclear levels by a reaction process, which also provides larger anisotropies for the detection of the resonance and allows singles, rather than coincidence, detection. The limit of application will be set not by the nuclear lifetime, but by the relaxation times of the nuclei in their environments.
We thank Professor A. M. Portis for helpful discussions, Mrs. Winifred E. Heppler for the sample preparations and Mr. R. C. Acker for devising the r-f circuitry.

REFERENCES

4. E. Matthias and D. A. Shirley, to be published.

8. We are indebted to A. M. Portis for pointing out this possible contribution to the linewidth.
FIGURE CAPTIONS

Fig. 1. Coincidence counting rate as a function of applied rf frequency, for the 84.0-74.8 keV γ-ray cascade of Rh100 in nickel.

Fig. 2. Energy-level diagram. Three levels of 100Rh, of respective spins 1, 2, 1, are quantized in a hyperfine magnetic field parallel to the counter axis. Only the σ ($\Delta M = \pm 1$) components of dipole γ radiation, with distribution $\sim (1 + \cos^2 \theta)$, can strike counters at $\theta = 0^\circ$ and 180°. For a coincidence to be registered, σ components of both the 84.0-keV (γ_1) and the 74.8-keV (γ_2) transitions must be recorded within 1 μsec. We denote σ and π components by solid and dotted lines, and $\Delta M = \pm 1$ transitions within the 74.8-keV state by heavy lines. On the left a typical σ component of γ_1 is shown, with six of the many possible fates that may befall the nucleus in the intermediate (74.8-keV) state. Four of these paths end in σ transitions and are recorded as coincidence. The other two contribute to the dip in Fig. 1. Most of the possible components are omitted for clarity.
74.8 keV level \(T_{1/2} = 235 \text{ nsec} \)

\(^{100}\text{Rh} \) in Ni

20° C

Fig. 1
Fig. 2
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.