Title
Relationships Between Vehicle Mass, Footprint, and Societal Risk

Permalink
https://escholarship.org/uc/item/0nn190tb

Author
Wenzel, Tom

Publication Date
2014-04-21
Background: NHTSA and EPA want to set new vehicle fuel economy/CO₂ standards that encourage down-weighting without compromising safety

Method: Two phases:
1. replicate NHTSA 2012 regression analysis of US societal fatality risk per vehicle mile traveled (VMT)
2. regression analysis of societal casualty (fatality + serious injury) risk per crash, using data from 13 states

Mass reduction holding size constant slightly increases US fatality risk per VMT, particularly for cars less than 3,106 lbs; footprint reduction holding mass constant increases risk for cars and CUVs/minivans

Other vehicle, driver, and crash factors have a larger estimated effect on fatality or casualty risk than mass or footprint reduction (figure shows effect on US fatality risk per VMT in cars)

Effect of mass reduction varies substantially under 19 alternative regression models, depending on measure of risk, control variables, and data used

Conclusions
- Vehicle mass can be reduced while maintaining footprint without compromising societal safety, in all vehicles but the lightest cars
- Some light car models have the same risk as models that weigh hundreds of pounds more
- Historical relationship between mass and safety may not hold in the future with greater use of lightweight high-strength materials
- Replacing 80% of SUVs/small pickups, and 50% of large pickups, with cars/ CUVs/minivans would reduce fatalities more (3.3%) than lowering pickup mass to that of cars (0.5%)
- A combined standard, where light trucks meet the same high standard as cars, could dramatically reduce fuel consumption while improving societal safety

Acknowledgement: This work was supported by the Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program of the US DOE under Contract No. DE-AC02-05CH11231
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

DE-AC02-05CH11231