Lawrence Berkeley National Laboratory
Recent Work

Title
KINETICS OF GRAPHITIZATION IN GLASSY CARBON

Permalink
https://escholarship.org/uc/item/0ns0131z

Author
Saxena, Ram R.

Publication Date
1976-11-01
KINETICS OF GRAPHITIZATION IN GLASSY CARBON

Ram R. Saxena and Robert H. Bragg

November 1976

Prepared for the U. S. Department of Energy
under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
KINETICS OF GRAPHITIZATION IN GLASSY CARBON
Ram R. Saxena and Robert H. Bragg
Materials and Molecular Research Division, Lawrence Berkeley Laboratory
and Department of Materials Science and Engineering,
University of California, Berkeley, California 94720

ABSTRACT

The kinetics of graphitization has been studied using structure
parameters d_{002}, L_c, and L_a derived from wide angle x-ray diffraction
measurements. For Glassy Carbon (GC) isochronally (two hours each) heat
treated in the temperature range 1000-2800°C, the behavior of these para-
eters can be studied in three separate regions: (1) For heat treatment
temperature (HTT) $< 1500°C$ GC undergoes dehydrogenation, (2) For $1500°C<
HTT < 2300°C$ the main process is stress relief, (3) For HTT $> 2300°C$
graphitization takes place. The activation energy for graphitization in
the third region has been determined to be $215 ±$ Kcal/mole using the
'superposition technique'.

*Current address: Varian Associates, K-210, 611 Hansen Way, Palo Alto,
CA 94303.
INTRODUCTION

Glassy carbon (GC) is a non-graphitizing carbon characterized by a d_{002} always larger than that of graphite, i.e. 3.35 Å. High resolution electron microscopic studies\(^1\) show that GC has an entangled lath like structure. By using selected area electron diffraction Whittaker et al\(^2\) have found evidence of various allotropic forms of carbon in GC. Our work in this area has produce basically similar results. However, we believe that the material is homogeneous, and the 'allotropes' are artifacts of the sample preparation technique. Crushing the material leads to straightening of the laths and relief of shrinkage stresses built in during pyrolysis\(^3\). This explains why on heat treatment the alleged allotrope nuclei do not grow and why GC does not 'transform' into graphite. In the high resolution electron microscopy studies the specimens are thinned by ion milling and in these cases no allotropes have been reported.

However structural parameters of GC do change on heat treatment suggesting that one can study the 'kinetics of graphitization'. The interplanar separation d_{002}, the crystallite size in the layer plane L\(_a\) and in a plane normal to the layer L\(_c\) have been used extensively to characterize GC. These can be easily determined from XRD patterns. For GC it is extremely difficult to resolve higher order reflection due to overlapping (00\(_k\)) and (hk) bands. Thus strain broadening effects have remained in L\(_a\) and L\(_c\). The actual crystallite sizes, on removing strain broadening, should be larger than those calculated using simple line broadening formulae.\(^4\)
The most extensive study of kinetics in GC is "Tensile Creep Studies on GC" by Fischbach. An effective energy of 350 ± 40 Kcal/mole over the range 2500-2900°C was calculated from the creep data. No other estimate of an activation energy has been reported, to the authors' knowledge.

EXPERIMENTAL:

Wide angle x-ray diffraction was used to characterize the structure of heat treated glassy carbon samples.* The range of samples studied included isochronal heat treatments for two hours each at 1100°C and from 1300 to 2800°C in 100°C increments. To study the kinetics of structural changes in GC, samples were heated at 1700, 2000, 2300, 2500 and 2700°C for various time intervals. The heat treatments of the GC samples were carried out in a graphite furnace. The GC samples (5.0 x 2.5 x 0.16) cms were placed in a cylindrical graphite crucible 7.6 cms x 6.3 cms size and surrounded with GC wool. An optical pyrometer calibrated for the temperature range 1000-3000°C was used to measure the temperature. The nomenclature for the heat treated samples is henceforth GC-HHT-time, e.g. GC-1500-2 means GC heat treated at 1500°C for two hours.

The x-ray data on 2.5 x 1.2 cms GC samples were obtained on a GE XRD-3 diffractometer. A 1° beam slit, MR Soller Slit and 0.1° receiving slit in reflection geometry were used in our experiments. This combination was decided upon to obtain sufficient intensity, usually quite low for GC samples, and because our experiments with varying slit sizes

*The GC plates (8"x2"x1/16") were bought from Polycarbon Co., Hollywood, CA.
showed that the effect of a large slit in distorting the diffraction pattern is mainly in the low angle ($2\theta < 15^\circ$) region. CuK$_a$ radiation was used at 45KV, 40mA. Both a Ni filter and pulse height analyzer were used for improved monochromatization. For a few samples data were obtained in both point count and recorder modes. For the former, fixed counts of 10^4 were made at each value of 2θ. For the recorder mode the goniometer was scanned at 2°/min and chart speed was adjusted so that the chart abissae divisions corresponded to 0.1° (2θ) intervals. After applying all the corrections discussed below, the two sets of data were found to be equivalent, hence the recorder technique was used for the majority of samples.

Because of the large volume of voids in GC there is pronounced small angle x-ray scattering that persists at high angles. To obtain the true profile of (002) reflection it is necessary to subtract the small angle scattering intensity and make other corrections. The data were corrected by first subtracting the Compton background intensity and the small angle scattering intensity and dividing out the Lorentz-Polarization and atomic scattering factors. The data were then normalized to the maximum intensity value in each case. Three parameters were obtained from the intensity vs. $\sin \theta$ plots.

1. d_{002} - from the (002) peak position using $\lambda = 2\, \text{dsin}\theta$
2. L_c - from the width at half maximum of the (002) peak using
 Scherrer's formula $L_c = \frac{0.45\lambda}{\Delta(\sin\theta_c)}$
3. L_a - from the width at half maximum of the (10) band using
 Warren's formula, $L_a = \frac{0.92\lambda}{\Delta(\sin\theta_a)}$
Because of the breadths of the maxima the peak position is difficult to determine precisely, even after all the corrections are made, but the \(d_{002} \) data are accurate to \(\pm 0.005 \text{Å} \). The width at half maximum of the (10) band is difficult to determine because of interference from the superimposed 004 reflection. For this reason a parameter \(t_a \) was also
obtained in some cases using the width at 75% maximum of the (10) band. The precisions of L_c, L_a data are $+0.5\AA^0$, $+2\AA^0$ respectively.

RESULTS - Isochronal Studies:

The variations of d_{002}, L_c and L_a for the isochronals are shown in Fig. 1. Three regions can be separated according to HTT variation of d_{002}. Below a HTT of $1500^\circ C$, d_{002} decreases with HTT. From $1500^\circ C$ to $2300^\circ C$ d_{002} is approximately constant at $3.44\AA^0$. The third region is above $2300^\circ C$ where d_{002} decreases with HTT. As seen in Fig. 1 both L_c and L_a increase as HTT increases, but the separation into three regions is not as striking as in the case of the d_{002} variation.

RESULTS - Kinetic Studies:

The "superposition technique" was used to study the kinetics of change in GC. This technique does not depend on the order of the kinetics. However it could be easily illustrated for a first order case. Briefly, if a property, P, follows first order kinetics,

$$P = P_f + (P_i - P_f) \exp(-kT)$$

where P_i, P_f are the initial and the final values of the property P. For a thermally activated process the rate constant k is expected to follow,

$$k = k_o \exp(-\Delta H/RT) = k_o . K(T)$$

Plotting the property vs ln t, if a translation along the ln time axis superimposes curves for different HTT, then

$$\ln \frac{K(T)}{K(T_0)} = \ln t - \ln t_o = -\frac{\Delta H}{RT} \left(\frac{1}{T} - \frac{1}{T_o} \right)$$
where the subscript "o" refers to an arbitrarily chosen reference curve of P vs ln t. Hence a plot of such shifts along ln t needed to superimpose all the curves onto the reference curve against 1/T gives the apparent activation energy ΔH.

The plot of L_c vs ln t for five different HTT is shown in Fig. 2. The curves of 1700 and 2000°C are seen to be superimposable but do not overlap the higher HTT curves. This seems to confirm that they belong to a different region and the kinetics of this region is rather slow. The curves for the other 3 HTT's do overlap and taking L_c for GC 2700-2 as a reference point they can all be made to fall on one single curve as shown in Fig. 3. The plot of the shifts vs. 1/T shown in Fig. 4 gives an apparent activation energy 200 ± 30 Kcal/mole. The L_1 data could also be translated to obtain a composite plot shown in Fig. 5. The activation energy plot is shown in Fig. 6. The apparent activation energy is found to be 225 ± 30 Kcal/mole. Combining the two estimates the apparent activation energy is 215 ± 40 Kcal/mole. Although there is scatter in the data the variations in d_{002} and L_a were found to be consistent with the calculated activation energy.

DISCUSSION:

From the experimental data it is evident that the evolution of the structure of GC with HTT goes through three different stages. The three regions can be understood on the following basis. Up to the HTT of 1500°C, the material is going through a settling down process, and completion of dehydrogenation around 1500°C has been suggested. We have recently done a preliminary study using a mass spectrometer and were able to
detect increasing amount of \(H_2 \) evolution as GC-1000-1 was heated up to 1150°C. The second region is characterized by a constant value of \(d_{002} \) at 3.44Å corresponding to turbostratic carbons. We believe that the increase in \(L_c \) and \(L_a \) in this region is largely due to stress relief. Fischbach\(^5\) in his creep studies of GC has noted that as a result of shrinkage (approximately 40%) during pyrolysis, GC probably has high internal stresses which are relieve slightly with higher heat treatment temperatures (greater than 2000°C). Also while trying to intercalate GC with K in a gaseous atmosphere the material was reduced to a fine powder. The proposed explanation was the presence of intense frozen stresses in GC which were abruptly relieved.\(^8\) In our kinetic data the curves of \(L_c \) versus \(l \) for 1700°C and 2000°C HTT are seen to be similar to each other but qualitatively different from the curves for higher HTT. It should be possible to study stress relief in this region roughly below 2300°C although rather long times are required to get small changes.

In the third stage the structure slowly evolves toward the ideal graphite structure and limited graphitization takes place. But even at 2800°C the interlayer spacing of 3.40Å is much larger than the ideal 3.35Å. It seems that this material is metastable in its disordered form and thermodynamic evidence for this is given in the work of Das and Hucke.\(^9\) The activation energy for structural change for HTT > 2300°C is found to be \(\approx 215 \) Kcal/mole. It should be pointed out that no attempt has been made to remove strain broadening effects in this region. If these are large, the effect would be to increase the estimate of the activation energy.
Kinetics of graphitization has been reviewed in detail by Fischbach. The activation energy values reported range from 90-270 Kcal/mole. For graphitizing carbons 260 Kcal/mole is the accepted value, and the mechanisms is considered to be vacancy diffusion. Unfortunately, estimates of activation energy for vacancy diffusion vary considerably and no reliable direct measurement of self diffusion has been made. It is found that the activation energy obtained for GC in this study of L_c is less than that for graphitizing carbons.

It is difficult to reconcile our value of the activation energy of 215 ± 40 Kcal/mole with Fischbach's estimate of 350 ± 40 Kcal/mole. It is possible that a strain broadening correction would change our estimate enough to account for the difference. It is also possible that there is more than one process involved and the creep studies measure a complex effective activation energy.

CONCLUSION:

Our results show that the kinetics of graphitization in GC can be studied in three different regions. These are identified by characteristic processes of dehydrogenation, stress relief, and graphitization. The estimate of activation energy in the third region (HTT > 2300°C) is 215 ± 40 Kcal/mole.
ACKNOWLEDGEMENT

This work was supported by the U. S. Department of Energy through the Materials and Molecular Research Division, Lawrence Berkeley Laboratory.
REFERENCES

FIGURE CAPTIONS

Fig. 1. Heat treatment temperature dependence of d_{002}, L_c and L_a for GC heat treated for two hours each.

Fig. 2. Heat treatment temperature and time dependence of L_c.

Fig. 3. Composite plot for L_c data using GC 2700 as reference.

Fig. 4. Activation energy plot for L_c data.

Fig. 5. Composite plots L'_a parameter.

Fig. 6. Activation energy plot for L'_a.
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Activation Energy
200 ± 30 kcal/mole
Heat Treatment Temp., °C
- 2500
- 2600
- 2700
- 2800

Fig. 5
Fig. 6

\[\frac{K(T)}{K(T_0)} \]

225 \pm 30 \text{ kcal/mole}

\[10^4/T, \text{ } ^\circ\text{K}^{-1} \]
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.