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ABSTRACT
We apply a method recently introduced to the statistical literature to directly estimate
the precision matrix from an ensemble of samples drawn from a corresponding Gaus-
sian distribution. Motivated by the observation that cosmological precision matrices are
often approximately sparse, the method allows one to exploit this sparsity of the preci-
sion matrix to more quickly converge to an asymptotic 1/

√
Nsim rate while simultane-

ously providing an error model for all of the terms. Such an estimate can be used as the
starting point for further regularization efforts which can improve upon the 1/

√
Nsim

limit above, and incorporating such additional steps is straightforward within this frame-
work. We demonstrate the technique with toy models and with an example motivated by
large-scale structure two-point analysis, showing significant improvements in the rate
of convergence. For the large-scale structure example we find errors on the precision
matrix which are factors of 5 smaller than for the sample precision matrix for thousands
of simulations or, alternatively, convergence to the same error level with more than an
order of magnitude fewer simulations.

Key words: cosmological parameters — large-scale structure of Universe

1 INTRODUCTION

Frequently in astrophysics and cosmology the final step in any
analysis is to compare some summary of the data to the predic-
tions of a theoretical model (or models). In order to make this
comparison a model for the statistical errors in the compressed
form of the data is required. The most common assumption is
that the errors are Gaussian distributed, and the covariance ma-
trix, Cij , is supplied along with the data. In order for precise
and meaningful comparison of theory and observation, the the-
oretical model, summary statistics derived from the data and
Cij must all be accurately determined. A great deal of work has
gone into all three areas.

There are three broad methods for determining such a co-
variance matrix. First, there may be an analytical or theoretical
description ofCij that can be used (see Niklas Grieb et al. 2015;
O’Connell et al. 2015; Pearson & Samushia 2015, for some re-
cent examples and further references). Secondly, we may at-
tempt to infer Cij from the data itself. This is often referred to
as an ‘internal error estimate’ and techniques such as jackknife
(Tukey 1958) or bootstrap (Efron 1979) are commonly used.
Thirdly, we may attempt to infer Cij by Monte-Carlo simu-
lation. This is often referred to as an external error estimate.
Combinations of these methods are also used.

Our focus will be on the third case, where the covariance
matrix is determined via Monte-Carlo simulation. The major

limitation of such methods is that the accuracy of the covariance
matrix is limited by the number of Monte-Carlo samples that are
used with the error typically scaling at N−1/2

sim (see, e.g. Dodel-
son & Schneider 2013; Taylor et al. 2013; Taylor & Joachimi
2014, for recent discussions in the cosmology context). These
errors manifest themselves both as ‘noise’ and ‘bias’ in the sam-
ple covariance matrix and the inverse covariance matrix (which
we shall refer to as the ‘precision matrix’ from now on and de-
note by Ψ).

We consider the specific case where the precision matrix is
sparse, either exactly or approximately. This may happen even
when the covariance matrix is dense, and occurs generically
when the correlations in the covariance matrix decay as a power
law (or faster). It is worth emphasizing that any likelihood anal-
ysis requires the precision matrix, and not the covariance matrix.
We present an algorithm that can exploit this sparsity structure
of the precision matrix with relatively small numbers of simula-
tions.

The outline of the paper is as follows. In Section 2 we in-
troduce our notation and set up the problem we wish to address.
Section 3 introduces the statistical method for entry-wise esti-
mation of the precision matrix, plus a series of refinements to
the method which improve the convergence. Section 4 presents
several numerical experiments which emphasize the issues and
behavior of the algorithm, both for a toy model which illus-
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2 Padmanabhan et al

Notation Description

N (µ,C) Normal distribution with mean µ, covariance C
x ∼ D x distributed as D
‖ · ‖F Frobenius matrix norm (see Eq. 1)
‖ · ‖2 Spectral matrix norm (see after Eq. 1)
At Transpose of A

Table 1. Summary of notation used in this paper

trates the principles behind the algorithm and for a model based
on galaxy large-scale structure analyses. We finish in Section 5
with a discussion of our results, the implications for analysis,
and directions for future investigation.

2 NOMENCLATURE AND PRELIMINARIES

We will consider p-dimensional observations, x, with a covari-
ance matrix C and its inverse, the precision matrix Ψ; we dif-
fer from the usual statistical literature where the covariance and
precision matrices are represented by Σ and Ω in order to match
the usage in cosmology more closely. Since we will need to con-
sider both estimates of these matrices as well as their (unknown)
true value, we denote estimates with hats. Individual elements
of the matrix are represented by the corresponding lowercase
Greek letters, e.g. ψij . We will also want to consider normal-
ized elements of the precision matrix - we will abuse notation
here and define these by rij ≡ ψij/

√
ψiiψjj .

We denote the normal distribution with mean µ and co-
variance C by N (µ,C). The notation x ∼ D denotes a ran-
dom variable xwith a probability distributionD. The Frobenius
norm of a matrix is defined by

‖A‖F ≡

(∑
i

∑
j

a2ij

)1/2

=

(
TrAAt

)1/2

(1)

while the spectral norm, denoted by ‖ ·‖2, is the largest singular
value of the matrix. Table 1 summarizes our notation.

The problem we consider is estimating the p× p precision
matrix, Ψ, from d independent samples1, xi where 1 6 i 6 d
and where xi is a p dimensional vector assumed to be drawn
from a Gaussian distribution. The usual approach to this prob-
lem has been to compute the sample covariance matrix

S =
1

d− 1

d∑
i=1

(∆xi)(∆xi)
t (2)

where the superscript t is the transpose, and ∆xi ≡ xi −
(1/d)

∑d
i=1 xi is the difference vector. An unbiased estimate

of the precision matrix is then

Ψ̂ =
d− p− 2

d− 1
S−1 (3)

where the prefactor accounts for the mean of the inverse-
Wishart distribution (for a first application in cosmology, see
Hartlap et al. 2007).

1 We use d instead of Nsim in what follows for brevity.

3 THE METHOD

Our approach in this paper uses the observation that precision
matrices in cosmology are often very structured and sparse. Un-
fortunately, this structure is hard to exploit if computing the
precision matrix involves the intermediate step of computing
the covariance matrix. Our approach uses a technique, pointed
out in Ren et al. (2015), to directly compute the precision ma-
trix from an ensemble of simulations. Unlike that work, which
was interested in an arbitrary sparsity pattern, the structure of
cosmological precision matrices is expected to be more regular,
significantly simplifying the problem.

The steps in our algorithm are :

(i) Estimate the elements of the precision matrix entrywise.
(ii) Smooth the precision matrix.
(iii) Ensure positive-definiteness of the resulting precision

matrix.

Each of these are discussed in detail below. It is worth empha-
sizing that the key insight here is the first step, and it is easy to
imagine variants of the remaining steps that build off an entry-
wise estimate of the precision matrix.

3.1 Entrywise estimates

Consider a random vector xi = (Z1, Z2, ..., Zp) drawn from
a multivariate normal distribution with mean 0 (this is trivially
generalized) and covariance matrix C. Imagine partitioning the
components into two sets A and Ac ≡ {1, . . . , p} \A with ZA

denoting the subset of components in set A. Consider the prob-
ability of ZA conditioned on ZAc (see Appendix A for some
useful identities)

P (ZA|ZAc) = N (−Ψ−1
A,AΨA,AcZAc ,Ψ−1

A,A) , (4)

where ΨA,B represents the submatrix indexed by the sets of
indices A and B. This equation can be interpreted as linearly
regressing ZA on ZAc :

ZA = βZAc + eA (5)

where β = −Ψ−1
A,AΨA,Ac and 〈eAetA〉 = Ψ−1

A,A. This inter-
pretation is key to the algorithm presented here : the inverse of
covariance of the residuals of the above linear regression is an
estimate of a subset of the full precision matrix.

The above equation also demonstrates how to make use
of the sparsity of the precision matrix. Note that the subma-
trix ΨA,Ac (that appears in β) inherits the sparsity of the pre-
cision matrix and therefore, one only need regress on a small
number of elements of ZAc . To illustrate this with a concrete
example, consider a tridiagonal Ψ and A = {1}. Eqs. 4 and
5 imply that Z1 = βZ2 + e where, in this case, β and e
are simply scalars, and 〈e2〉 = ψ−1

1,1. Given measurements
(Z

(1)
1 , Z

(1)
2 , · · · ), (Z

(2)
1 , Z

(2)
2 , · · · ), . . ., (Z

(d)
1 , Z

(d)
2 , · · · ), we

do an ordinary least-squares fit for β estimating the error e2

and use ψ1,1 = e−2. The linear regression in this case requires
d � 2 observations to robustly determine β and e, compared
with d � p observations where p is the rank of the precision
matrix; this can translate into a significant reduction in the re-
quired number of simulations.

We can now write down the first step of our algorithm. For
every pair 1 6 i < j 6 p, linearly regress Z{ij} on Z{k,l,...}
where the k, l, . . . are determined by the sparsity pattern of the
matrix. For the cases considered here, we perform an ordinary

c© 0000 RAS, MNRAS 000, 000–000



Estimating sparse precision matrices 3

least squares regression, which guarantees that β̂ and ê are in-
dependent (Greene 2003). From the residuals, we form the 2×2
covariance matrix, which can be inverted to get an estimate of
the precision matrix elements ψii, ψij and ψjj :(

ψ̂ii ψ̂ij

ψ̂ji ψ̂jj

)−1

=
1

d−K
∑(

ê2i êiêj
êiêj ê2j

)
(6)

where the sum is over the d observations (the index is sup-
pressed to avoid confusion) and K is the number of variables
being regressed on. Note that this gives us estimates of ψii, ψij

and ψjj . While it is possible to directly estimate ψij , we have
found it more robust to estimate rij = ψij/

√
ψiiψjj . This

combination reduces the finite-sample corrections2 and as we
demonstrate in the next section, achieves its asymptotic distri-
bution (r − r̂) ∼ N (0,

√
1− r2/

√
d) for relatively small val-

ues of d. We therefore use these pairwise regressions to only
compute rij .

In order to compute the ψii, we repeat the above regression
analysis forA = i. Note that we could use the values of ψii cal-
culated in the previous step, but working in the single variable
case simplifies the analysis of the properties of the estimator.
Defining

s2 =
1

d−K
∑

ê2i (7)

one can show (Greene 2003) that

(d−K)s2ψii ∼ χ2
d−K (8)

and therefore the estimator

ψ̂ii =
d−K − 2∑

ê2i
(9)

is distributed as a scaled inverse χ2 distribution with d − K
degrees of freedom.

At the end of this first step, our estimate of the precision
matrix can be written as

Ψ̂ = DR0D (10)

where D is a diagonal matrix with Dii =

√
ψ̂ii while R0 has

rij on the off-diagonals and 1 on the diagonal.

3.2 Smoothing

We expect the covariance and precision matrices we encounter
in cosmology to be relatively “smooth”, which we can therefore
hope to use to reduce the noise in the entrywise estimates. Such
a smoothing operation can take many forms. If we could con-
struct a model for the covariance/precision matrix, one could
directly fit the entrywise estimates to the model. For example,
on large scales, one might use a Gaussian model with free shot
noise parameters (Xu et al. 2012; O’Connell et al. 2015). In the
absence of a model, one might use a non-parametric algorithm
to smooth the precision matrix, respecting the structure of the
matrix. For the examples we consider in this paper, we use a cu-
bic smoothing spline and smooth along the off-diagonals of the
matrix, with the degree of smoothing automatically determined
by the data using a cross-validation technique. Since we believe
that such a smoothing procedure may be generically useful, Ap-
pendix C contains an explicit description of the algorithm.

2 For instance, the d−K factor cancels in its computation

3.3 Maximum-Likelihood Refinement

The estimate of the precision matrix is “close” to the true preci-
sion matrix in a Frobenius sense. However, since the matrix was
estimated entrywise, there is no guarantee that R0 (and there-
fore Ψ̂) is positive definite3. Our goal in this section is to find a
refined estimateR that is both positive definite and close toR0.

A natural approach is to choose R to maximize its poste-
rior P (R|S) given an observed sample covariance matrix and
the prior onR fromR0. Again assuming Gaussianity, the like-
lihood of S (ignoring irrelevant constants) is

2 logP (S|Ψ) = d
(

log det Ψ− tr SΨ
)

(11)

while we take the prior onR to be

2 logP (Ψ̂) = −d‖R −R0‖2F (12)

where we assume that the error on rij is d−1/2. We ignore the
r dependence on the error to avoid potentially biasing these re-
sults with noise from the estimate; note that this error estimate
is a conservative estimate. For similar reasons, we hold the di-
agonal matrix D fixed. Putting this together, our maximization
problem can be written as

R = argmax
rij ,(ij)∈J
R�0

[
log detR− tr

(
DSDR

)
− ‖R−R0‖2F

]
(13)

where J is the set of indices of the nonzero elements of R (as
determined by the sparsity of the matrix) and R � 0 repre-
sents the space of positive definite matrices. We also observe
that while we have fixed the relative weights of the likelihood
and prior terms here based on the expected error on r, it is pos-
sible in principle to weight these contributions differently. We
leave this possibility open for future applications. We also note
that this refinement step is reminiscent of the Scout estimator of
Witten & Tibshirani (2009).

We perform this optimization using standard techniques;
details of the algorithm are in Appendix B.

4 NUMERICAL EXPERIMENTS

4.1 Model Covariance and Precision Matrices

We consider two examples of covariance (and precision) ma-
trices in this paper. First, in order to build intuition, we con-
sider a tridiagonal precision matrix Ψ = (ψij) where ψii = 2,
ψi,i+1 = ψi−1,i = −1 and zero otherwise. The structure of
the resulting covariance matrix is shown in Fig. 1; unlike the
precision matrix, the covariance matrix has long range support.
The structure of this precision matrix, and the corresponding
covariance matrix, is qualitatively similar to the cosmological
examples we will consider later. We fix p = 100; this is similar
to the number of parameters in covariance matrices for current
surveys.

Second, we use an example more closely related to the co-
variance matrices one might expect in galaxy redshift surveys.
Galaxy redshift surveys typically involve negligible measure-
ment uncertainties, but suffer instead from both sampling vari-
ance and shot noise. These can be estimated within the frame-
work of a theory, but a theory for the formation of non-linear

3 The diagonal matrices D are positive definite by construction.

c© 0000 RAS, MNRAS 000, 000–000
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Figure 1. A density plot of the covariance matrix for our toy tridiagonal
precision matrix with 2 along the diagonals and −1 on the first off-
diagonal.
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Figure 2. A representation of the precision matrix for the cosmologi-
cally motivated example. We plot the 25th, 50th, and 75th rows of the
matrix, demonstrating that the matrix is clearly diagonally dominant,
and very sparse. The inset shows that the full matrix shows the same
structure of the individual rows plotted here.

objects is not currently understood. Instead we use a linear
theory approximation. Specifically, we compute the covariance
matrix of the multipoles of the correlation function, ξ`(s), as-
suming Gaussian flucutations evolved according to linear the-
ory. The assumed cosmology and power spectrum are of the
ΛCDM family, with Ωm = 0.292, h = 0.69, ns = 0.965 and
σ8 = 0.8. The objects are assumed to be linearly biased with
b = 2 and shot-noise is added appropriate for a number den-
sity of n̄ = 4 × 10−4 h3Mpc−3. We evaluate Cij in 100 bins,
equally spaced in s, for both the monopole and quadrupole mo-
ment of the correlation function, interleaved to form a 200×200
matrix. Fig. 2 plots the corresponding precision matrix. This is
clearly dominated by a narrow banded structure, and is similar
in character to our first case.

4.2 Entry-wise estimates

We start by characterizing the accuracy with which we can esti-
mate individual entries of the precision matrix. As we discussed
previously, we separate out the measurements of the diagonal
elements of Ψ from the off-diagonal elements; for the latter,
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Figure 3. Histograms of the recovered values of ψ50,50 for different
values of d, correcting for the finite sample bias. We assume that the
matrix is banded to k = 25 in all cases. The solid [red] line is the
expected distribution of these values.
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Figure 4. Same as Fig. 3, except for r50,51.

we compute rij ≡ ψij/
√
ψiiψjj . Figs. 3 and 4 show the dis-

tributions of the recovered values for two representative entries
of the precision matrix of our toy model. The different panels
correspond to different numbers of simulations d, while each of
the histograms is constructed from an ensemble of 1000 such
realizations. We find good agreement with the theoretically ex-
pected distributions of both ψii and rij , with the distribution
for rij close to the asymptotically expected Gaussian even for
relatively small numbers of simulations. All of these results as-
sumed a k = 25 banded structure (i.e. 24 non-zero upper/lower
off-diagonals); the results for different choices of this banding
parameter are qualitatively similar. Holding the number of sim-
ulations d fixed, the scatter in the estimates decreases with de-
creasing k, since one is regressing on a smaller number of vari-
ables in this case.

Given these entrywise estimates (each of which will be in-
dividually noisy), we turn to the problem of “smoothing” away
this noise to improve our covariance estimates. If one had an a
priori model for the structure of the precision matrix, one could
directly fit to it. For instance, in the case of our toy model, one
might use the fact that the matrix has constant off-diagonals.
However, in general, one might only expect the matrix to be
smooth (nearby entries with the same value); in such a case, us-
ing eg. smoothing splines could provide a reasonably generic
solution.

c© 0000 RAS, MNRAS 000, 000–000
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0 20 40 60 80 100
-0.5

-0.4
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-0.2
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Index

r

Figure 5. A demonstration of the impact of smoothing on the elements
of the precision matrix for the cosmological model. We plot the odd ele-
ments of the first off-diagonal [top, circles] and the even elements of the
second off-diagonal for our cosmological model [bottom, squares] (see
text for details for how the covariance matrix is packed). The precision
matrix was estimated by assuming k = 20 and d = 2000 simulations.
The points are the raw entry-wise estimates, the dashed line is the true
value, while the solid line is the smoothed version. Note that smoothing
can significantly reduce the variance of the estimates. More complicated
smoothing schemes could reduce the bias at the very edges.

As a worked non-trivial example, we consider smoothing
an estimate of our cosmological model. Given that the underly-
ing galaxy correlation function is a smooth function, we would
expect the off-diagonals of the precision matrix to be smooth.
However, given that our matrix was constructed by interleaving
the monopole and quadrupole correlation functions, we’d ex-
pect this interleaving to persist in the off-diagonals. We there-
fore smooth the odd and even elements of each off-diagonal
separately. Fig. 5 shows the results for two example minor di-
agonals, comparing it to the raw entrywise estimates as well as
the true value. For the majority of the points, smoothing signif-
icantly reduces the noise in the entrywise estimates. It can also
miss features in the model, if those variations are smaller than
the noise. We observe this effect at the edges of the top curves,
where the smoothed curves miss the drop-off for the initial and
final points. This is clearly a function of the relative sizes of
these effects, as is evident from the lower sets of curves where
the smoothed estimates track the variations at the edges better.

Our final step is to ensure a positive definite precision ma-
trix using the algorithm presented in the previous section. Fig. 6
shows the final results, plotting an example row from the cos-
mological case. Our estimator tracks the oscillating structure in
the precision matrix, and is clearly less noisy than the direct
sample precision matrix. This improvement directly translates
into improved performance of the precision matrix.

4.3 Selecting the banding

We now turn to the problem of determining the banding param-
eter k. Our goal here isn’t to be prescriptive, but to develop a
simple guide. We anticipate that the choosing an appropriate
banding will depend on the particular problem as well as some
numerical experimentation.

Since we do not expect the off-diagonals of the precision
matrix to be exactly zero, choosing a banding reflects a trade-
off between bias and variance. By setting small off-diagonals to
be zero, our estimated precision matrix will, by construction, be
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Figure 6. A part of the 70th row of the cosmological precision matrix,
normalized by

√
ψiiψjj . The filled circles connected by solid lines is

the true precision matrix, the filled squares show the sample precision
matrix, while the open circles are the estimate developed in this paper.
The precision matrix was estimated from d = 1000 simulations, and we
assume a banding of k = 20 to estimate the matrix (short dashed lines).
The fiducial k = 15 banding that we use for this matrix is marked by
the long dashed lines.

3

15In
de
x

3

15In
de
x

Figure 7. Selecting the banding for the toy model, with each row repre-
senting whether a particular off-diagonal was consistent with zero or
not. Each row represents an off-diagonal, with the index of the off-
diagonal on the y-axis, while each column represents a set of d = 500

simulations used to estimate the precision matrix. In order to estimate
the precision matrix, we assume a banding of k = 25. Unfilled boxes
show diagonals consistent with zero, gray boxes show diagonals that
are inconsistent with zero at the 95% level but not at 99%, while black
represents diagonals inconsistent with zero at the 99% level. An index
of one represents the first off-diagonal. The top panel considers the un-
smoothed matrix, while the lower panel considers the smoothed case.
The tridiagonal nature of the matrix is clearly apparent here, with the
first off-diagonal clearly nonzero, and no structure evident for the re-
maining cases. We choose k = 3 as our fiducial choice for both cases.

m Unsmoothed Smoothed

70 2.47 0.75
80 2.52 0.71
90 2.56 0.67

100 2.59 0.63

Table 2. An example of the thresholds at the 95% level for the un-
smoothed and smoothed off-diagonals (see text for details on how these
are computed). While the thresholds increase for the unsmoothed case,
they decrease for the smoothed case since the increase in the number of
points better constrain the spline.

c© 0000 RAS, MNRAS 000, 000–000



6 Padmanabhan et al

biased. However, any estimate of these off-diagonal elements
from a finite number of simulations will be dominated by the
noise in the measurements. This also implies that the banding
will, in general depend on the number of simulations (except in
the case that the matrix is truly sparse); we will see this explic-
itly in the next section.

We propose a simple thresholding scheme to determine
whether an entire off-diagonal is consistent with zero or not -
we set an off-diagonal to zero if the maximum absolute value of
all its elements is less than a pre-determined threshold. For the
unsmoothed estimate of the precision matrix, we determine this
threshold as follows. Assume an off-diagonal has m elements
xi, all drawn from a Gaussians with mean zero and a known
variance (but with arbitrary correlations). Then, the probability
of exceeding a threshold value X can be bounded by the fol-
lowing

P (max xi > X) 6
∑
i

P (xi > X) = mP (x > X) (14)

where the last P (x > X) is the complementary cumulative
Gaussian probability distribution. Choosing an appropriate fail-
ure4 rate mP (x > X) determines the appropriate threshold to
use.

We follow a similar procedure for the smoothed estimate
of the precision matrix, although the choice of the threshold is
complicated by the smoothing procedure and the correlations
between different elements on the same off-diagonal. We there-
fore estimate the threshold by Monte Carlo, simulating m ran-
dom Gaussian variables, fitting them with a cubic spline and
then tabulating the distribution of maximum values. This pro-
cess ignores the correlations between the points and so, we ex-
pect our estimates to only be approximate. Table 2 shows an
example of these thresholds as a function of m.

Figs. 7 and 8 plot, for a set of simulations, which off-
diagonals are determined to be non-zero, using the above cri-
teria. Each row of these figures corresponds to an off-diagonal,
whereas each column represents an independent set of simu-
lations from which a precision matrix can be estimated. Since
our procedure assumes a banding of the precision matrix, we
start by selecting a conservative choice of the band. Filled boxes
show off-diagonals that are inconsistent with zero, with the
shading representing the confidence level for this. A banded ma-
trix in this figure would appear as a filled set of rows.

We start with the unsmoothed cases first (upper panels).
The tridiagonal nature of the toy precision matrix is clear, with
only a single row clearly visible. The cosmological example is
less sharp, but a central band is still clear. The smoothed cases
(lower panels) are noisier, because our estimates of the thresh-
olds ignored correlations. Even with this increased noise, we
discern no trend suggesting an increased banding for the toy
example. For the cosmological example however, the non-zero
band is clearly increased, implying that one must work out to
a larger band. This is to be expected, since the elements of the
precision matrix is this case are not exactly zero. Reducing the
noise (by smoothing) reduces the threshold below which one
may estimate an element of the precision matrix to be zero. We
find a similar trend with increasing numbers of simulations (dis-
cussed further below).

4 mis-classifying a zero off-diagonal as non-zero

5
10

20In
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x

5
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20In
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x

Figure 8. Same as Fig. 7 except for the cosmological model. The num-
ber of realizations per column is d = 1000, and the banding assumed
for in the estimate is k = 30. The difference between the smoothed
and unsmoothed cases is more apparent here. Smoothing requires us
to estimate more off-diagonals, due to the reduction in the noise. We
choose k = 10 and k = 15 for the unsmoothed and smoothed cases
respectively.

A shortcoming of the above is the lack of an objective, au-
tomatic determination of the banding. We do not have such a
prescription at this time (and it isn’t clear that such a prescrip-
tion is possible in general). We therefore advocate some level
of numerical experimentation when determining the appropri-
ate band.

4.4 Performance of estimates

We now turn to the performance of our precision matrix esti-
mates as a function of the number of simulations input. There
are a number of metrics possible to quantify “performance”.
The most pragmatic of these would be to propagate the esti-
mates of the precision matrix through parameter fitting, and see
how the errors in the precision matrix affect the errors in the
parameters of interest. The disadvantage of this approach is that
it is problem-dependent and therefore hard to generalize. We
defer such studies to future work that is focused on particular
applications.

A more general approach would be to quantify the “close-
ness” of our precision matrix estimates to truth, using a “loss”
function. There are a variety of ways to do this, each of which
test different aspects of the matrix. We consider five such loss
functions here :

(i) Frobenius Norm :

||∆Ψ||F ≡ ||Ψ− Ψ̂||F (15)

This is an entrywise test of the elements of the precision matrix,
and is our default loss function. Clearly, reducing the Frobenius
norm will ultimately improve any estimates derived from the
precision matrix, but it is likely not the most efficient way to do
so. In the basis where ∆Ψ is diagonal, the Frobenius norm is
just the RMS of the eigenvalues, and can be used to set a (weak)
bound on the error on χ2.

(ii) Spectral Norm :

||∆Ψ||2 ≡ ||Ψ− Ψ̂||2 (16)

This measures the largest singular value (maximum absolute
eigenvalue) of ∆Ψ. This yields a very simple bound on the er-
ror in χ2 — ||∆Ψ||2|x|2 where x is the difference between the
model and the observations.
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(iii) Inverse test : A different test would be to see how well
Ψ̂ approximates the true inverse of C. A simple measure of this
would be to compute ||CΨ̂−I||F = ||CΨ̂−CΨ|| = ||C∆Ψ||.
However, this measure is poorly behaved. In particular it isn’t
invariant under transposes, although one would expect Ψ̂ to be
an equally good left and right inverse. To solve this, we use the
symmetrized version ||C1/2Ψ̂C1/2−I||F , although for brevity,
we continue to denote it by ||C∆Ψ||F .

(iv) χ2 variance : Given that parameter fits are often done
by minimizing a χ2 function, we can aim to minimize the er-
ror in this function due to an error in the precision matrix. If
we define ∆χ2 = xt

(
∆Ψ

)
x, where as before, x is the dif-

ference between the data and the model, we define the χ2 loss
as the RMS of ∆χ2. In order to compute this, we need to spec-
ify how x is distributed. There are two options here. The first
comes from varying the input parameters to the model, while
the second comes from the the noise in the data. The former is
application-dependent and we defer specific applications to fu-
ture work. The second suggests x ∼ N (0,C), in which case
we find

σ
(

∆χ2
)

=

[
2Tr
(
∆ΨC∆ΨC

)
+
(
TrΨC

)2]1/2 (17)

(v) Kullback-Leibler (KL) divergence : Our final loss func-
tion is the Kullback-Leibler divergence5 between C and Ψ, de-
fined by

KL ≡ 1

2

[
Tr(CΨ)− dim(C)− log det(CΨ)

]
. (18)

The Kullback-Leibler divergence can be interpreted as the ex-
pectation of the Gaussian likelihood ratio of x computed with
the estimated and true precision matrices. As in the inverse vari-
ance case, we assume x ∼ N (0,C), which captures the varia-
tion in the data.

Figures 9 and 10 show these different losses for our toy
and cosmological models; we plot the ratio of the loss obtained
using the sample precision matrix to the loss obtained using
the techniques presented in this paper. The figures show the
improvement averaged over fifty realizations, although the im-
provement for individual realizations is similar. For all choices
of a loss function, we find that the techniques presented here
yield a factor of a ∼few improvement over simply inverting the
sample precision matrix. The largest gains come from exploit-
ing the sparsity of the precision matrix and directly estimating
it from the simulations. The secondary smoothing step yields a
smaller relative (although clear) improvement. Given the similar
behaviour of all the loss functions, we focus on the Frobenius
norm below for brevity.

We now turn to how the loss depends on the number of
simulations d; Figs. 11 and 12 summarize these results for
both models considered here. The improvements seen above
are immediately clear here. At a fixed number of simulations,
one obtains a more precise estimate of the precision matrix;
conversely, a significantly smaller number of simulations is re-
quired to reach a target precision. We also note that we can

5 A divergence is a generalization of a metric which need not be sym-
metric or satisfy the triangle inequality. Formally a divergence on a
space X is a non-negative function on the Cartesian product space,
X ×X , which is zero only on the diagonal.

KL σ(Δχ2) C ΔΨF ΔΨ2 ΔΨF
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Figure 9. The improvement over the sample precision matrix
Loss(sample)/Loss for different norms for the toy tridiagonal preci-
sion matrix. From left to right, each group plots the improvement for
the sample precision matrix (1 by construction), the unsmoothed and
smoothed precision matrices. We assume a k = 3 banding in both the
unsmoothed and smoothed cases, and all cases assume d = 500. We
average over 50 such realizations in this figure, although the improve-
ments for individual realizations are similar.
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Figure 10. The same as Fig. 9 but for the cosmological model. The
unsmoothed covariance matrix assumes k = 10, while the smoothed
covariance matrix uses k = 15. All three cases use d = 1000.
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Figure 11. The Frobenius loss ||∆Ψ||F for our toy model as a function
of sample size d for the sample precision matrix (blue circles), our esti-
mate of the precision matrix with and without the intermediate smooth-
ing step (green diamonds and orange squares respectively). The latter
two cases assume a banding of k = 3. The dashed lines show a d−1/2

trend which is more quickly attained by the estimates presented in this
work than by the sample precision matrix. Recall that this is a 100×100

matrix - one cannot estimate the sample precision matrix with d < 100.
This restriction isn’t present for the estimator presented here.
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Figure 12. Analogous to Fig. 11 except now for the cosmological
model. As in the previous case, the circles [blue] show the sample preci-
sion matrix, squares [orange] - our unsmoothed estimate with k = 10,
diamonds [green] - our smoothed estimate with k = 15, and and trian-
gles [red] - our smoothed estimate with k = 30. Unlike the toy model,
we see our estimators flatten out with increasing d at fixed values of k.
This reflects the fact that the precision matrix here is not strictly sparse,
and that with increasing values of d, one can reliably estimate more
elements of the matrix.

obtain estimates of the precision matrix with d < p simula-
tions. Given that we assume the precision matrix is sparse, this
isn’t surprising, although we re-emphasize that the usual proce-
dure of first computing a covariance matrix and then inverting it
doesn’t easily allow exploiting this property.

Analogous to the fact that the sample precision matrix re-
quires d > p to obtain an estimate, our approach requires d > k
to perform the linear regressions. The gains of the method come
from the fact that k can be significantly smaller than d.

We can also see how the accuracy in the precision matrix
scales with the number of simulations. For d � p, the error
scales as d−1/2 as one would expect from simple averaging.
However, as d gets to within a factor of a few of p, the error
deviates significantly from this scaling; at d < p the error is for-
mally infinite, since the sample covariance matrix is no longer
invertible.

The d dependence for our estimator is more involved. For
the case of the toy model, we find that the error lies on the d−1/2

scaling for the range of d we consider here, with the smoothed
estimator performing ∼10% better. Note that we do not con-
verge faster than d−1/2 - that scaling is set by the fact that we
are still averaging over simulations - but the prefactor is signifi-
cantly smaller. At fixed banding, the cosmological model starts
close to a d−1/2 scaling, but then flattens off as d increases.
This follows from the fact that the true precision matrix is not
strictly zero for the far off-diagonals, and therefore, the error in
the estimator has a minimum bound. However, the appropriate
banding will be a function of d, since as the number of simula-
tions increases, one will be able to estimate more off-diagonal
terms. We see this explicitly in the figure where the k = 30
curve starts to outperform the k = 15 curve at large d.

Motivated by this, we consider how the various losses vary
as a function of the assumed banding at fixed number of sim-
ulations. For the toy model, we find a well defined minimum
k value. Intriguingly, except for the Frobenius norm, it is one
larger that the true value. For the cosmological case, the answer
is less clear. All the norms suggest k > 10, but have very weak
k dependence after that, with possible multiple maxima. This
suggests that the particular choice of k will tend to be applica-
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Figure 13. Matrix losses as a function of the choice of the banding pa-
rameter k for the toy model. The dashed [red], dotted [blue] and solid
[green] lines correspond to the KL, ||C∆Ω|| and ||∆Ω||F losses re-
spectively. The losses are all normalized to the minimum value of the
loss. Recall that k is defined including the main diagonal (eg. k = 2
corresponds to one-off diagonal element). All of these are computed for
d = 500 simulations. We find a well-defined minimum here, although
for two of the three norms, it is at k = 3 and not k = 2.
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Figure 14. Same as Fig. 13 but for the cosmological model. The number
of simulations used here is d = 1000. Unlike the toy model, there isn’t
a clear optimal banding here, with small changes in the loss for banding
k > 10.

tion specific (and require some numerical experimentation). We
defer a more careful study of this to later work.

5 DISCUSSION

This paper describes a method recently introduced in the statis-
tics literature to directly estimate the precision matrix from an
ensemble of samples for the case where we have some infor-
mation about the sparsity structure of this matrix. This allows
for getting higher fidelity estimates of the precision matrix with
relatively small numbers of samples.

The key result in this paper is the description of an algo-
rithm to directly estimate the precision matrix without going
through the intermediate step of computing a sample covariance
matrix and then inverting it. It is worth emphasizing that this es-
timator is completely general and does not rely on the sparsity of
the precision matrix. The estimator does allow us to exploit the
structure of the precision matrix directly; we then use this prop-
erty for the specific case where the precision matrix is sparse.
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However, we anticipate that this algorithm may be useful even
beyond the specific cases we consider here.

We also demonstrate the value of regularizing elementwise
estimates of the precision matrix. Although this is not the first
application of such techniques to precision (and covariance) ma-
trices, we present a concrete implementation using smoothing
splines, including how regularizing parameters may be automat-
ically determined from the data.

We demonstrate our algorithm with a series of numerical
experiments. The first of these, with a explicitly constructed
sparse precision matrix, allows us to both demonstrate and cal-
ibrate every aspect of our algorithm. Our second set of ex-
periments uses the covariance/precision matrix for the galaxy
two-point correlation function and highlights some of the real
world issues that one might encounter, including the fact that
the precision matrices may not be exactly sparse. In all cases
our method improves over the naive estimation of the sample
precision matrix by a significant factor (see e.g. Figs. 9 and 10).
For almost any measure comparing the estimate to truth we find
factors of several improvement, with estimates based on 100 re-
alizations with our method outperforming the sample precision
matrix from 2000 realizations (see Figs 11 and 12). The errors
in our method still scales as N−1/2

sim , just as for an estimator
based on the sample covariance matrix. However, our approach
achieves this rate for a smaller number of simulations, and with
a significantly smaller prefactor.

A key assumption in our results is that the precision ma-
trix may be well approximated by a banded, sparse matrix. This
approximation expresses a trade-off between bias and noise.
Banding yields a biased estimate of the precision matrix, but
eliminates the noise in the estimate. We present a thresholding
procedure to estimate this banding, and find that the width of
band increases with increasing sample size, as one would ex-
pect. Our banded approximation is similar in spirit to the taper-
ing of the precision matrix proposed by Paz & Sánchez (2015).
A hybrid approach may be possible; we defer this to future in-
vestigations.

Realistic precision matrices may combine a dominant, ap-
proximately sparse component with a subdominant, non-sparse
component. For instance, in the case of the correlation func-
tion, the non-sparse component can arise even in Gaussian mod-
els from fluctuations near the scale of the survey volume, from
nonlinear effects, as well from the effect of modes outside the
survey volume (Harnois-Déraps & Pen 2012; de Putter et al.
2012; Takada & Hu 2013; Kayo et al. 2013; Mohammed &
Seljak 2014). In these cases, we imagine combining our esti-
mate of the dominant term with an estimate of the non-sparse
component (perhaps taken directly from the sample covariance
matrix). The key insight here is that our method may be used
to estimate the dominant term with higher fidelity. We defer a
detailed study of methods for estimating the non-sparse compo-
nent and combining the estimates to later work.

The computational requirements for the next generation of
surveys is in large part driven by simulations for estimating co-
variance and precision matrices. We present an approach that
may significantly reduce the number of simulations required for
classes of precision matrices. The ultimate solution to this prob-
lem will likely involve combining model-agnostic approaches
like the one presented in this work, with improved models for
covariance matrices.
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APPENDIX A: USEFUL LINEAR ALGEBRA RESULTS

For completeness, we include a few key linear algebra results
used in this paper. We refer the reader to Petersen & Pedersen
(2012) for a convenient reference.

A1 The Inverse of a Partitioned Matrix

Suppose

A =

[
A11 A12

A21 A22

]
(A1)

then

A−1 =

[
B−1

1 −A−1
11 A12B

−1
2

−B−1
2 A21A

−1
11 B−1

2

]
(A2)

where

B1 ≡ A11 −A12A
−1
22 A21 (A3)

B2 ≡ A22 −A21A
−1
11 A12 (A4)

A2 Conditional Distributions of a Multivariate Gaussian

If x ∼ N (µ,C) with

x =

[
xa

xb

]
(A5)

µ =

[
µa

µb

]
(A6)

C =

[
Ca Cc

CT
c Cb

]
(A7)

then p(xa|xb) = N (µ′a,C
′
a) with

µ′a = µa + CcC
−1
b (xb − µb) (A8)

C′a = Ca −CcC
−1
b CT

c (A9)

Note that the covariance matrices are the Schur complement of
the block matrices.

APPENDIX B: AN ALGORITHM FOR MAXIMUM
LIKELIHOOD REFINEMENT

The maximum likelihood problem is equivalent to solving[
R−1 −DSD − 2(R−R0)

]
J

= 0 . (B1)

A variant of this problem was considered in Bakonyi & Woerde-
man (1995), where they consider the solution of above prob-
lem without the prior constraint. They suggest using a Newton-
Raphson algorithm to solve this; we reproduce this below, in-
cluding the changes needed for our modified problem.
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If J = (i1, j1), . . . , (is, js) are the nonzero indices in the
R, we define the vectors

x =
(
Ri1j1 , . . . ,Risjs

)
(B2)

y =
(
y1, . . . , ys

)
(B3)

yp =

[
R−1 −DSD − 2(R−R0)

]
ipjp

(B4)

where x is just the list of elements of R we are varying, and y
are the residuals from our desired solution. The HessianH is an
s-by-s matrix with elements

Hpq = (R−1)ipjq (R−1)iqjp + (R−1)iqip(R−1)jqjp + 2 .
(B5)

The minimization proceeds by iterating the following steps until
the residual ||y||∞ has reached a pre-determined tolerance (we
use 10−9) :

(i) Compute the minimization direction v by solving y =
Hv.

(ii) Compute δ =
√
vT y, and set the step size α = 1 if

δ < 1/4; otherwise α = 1/(1 + δ).
(iii) Update x→ x+ αv, and use this to updateR and y. If

the update yields aR that is not positive definite, we backtrack
along this direction, reducing α by a factor of 2 each time, until
positive definiteness is restored. In practice, this happens rarely,
and early in the iteration, and a single backtrack step restores
positive definiteness.

The above algorithm is very efficient, converging in ∼ 50
iterations or fewer for the cases we consider. However, a major
computational cost is in inverting the Hessian6. For a k-banded
matrix, s = n(k−1)−k(k−1)/2; for some of the cases we con-
sider, this is easily between 103 and 104 elements. Inverting the
Hessian every iteration is computationally too expensive, and
we transition over to the BFGS algorithm (Nocedal & Wright
2000) for problem sizes s > 1000. Conceptually, the BFGS al-
gorithm (and others of its class) use first derivative information
to approximate the Hessian and its inverse. At each step of the
iteration, the inverse Hessian is updated using a rank-2 update
(Eq. 6.17 in Nocedal & Wright 2000), based on the change in
the parameters and the gradient. Since the algorithm works by
directly updating the inverse Hessian, we avoid the computa-
tional cost when computing the minimization direction.

We implement Algorithm 6.1 of Nocedal & Wright (2000)
and refer the reader there for a complete description. We limit
ourselves here to highlighting the particular choices we make.
The first is the starting approximation to the Hessian; we use
the identity matrix for simplicity. While we may get better per-
formance with an improved guess, this choice does not appear
to adversely affect convergence and we adopt it for simplicity.
The second choice is how to choose the step size in the one-
dimensional line minimization. Motivated by our success in the
Newton-Raphson case, we use the same step-size choice, with
the additional condition that we also backtrack if the error on
the previous iteration is < 0.9× the current error. This last con-
dition prevents overshooting the minimum. Note that the Wolfe
conditions (Nocedal & Wright 2000) are automatically satisfied
with this algorithm due to the convexity of our function.

6 Even though we don’t explicitly compute the inverse, there is a sub-
stantial cost to solving the linear system

Finally, we verify that both algorithms converge to the
same answer for the same problems.

APPENDIX C: CUBIC SMOOTHING SPLINES AND
CROSS VALIDATION

We summarize the construction of cubic smoothing splines as
used here; our treatment here follows Craven & Wahba (1979)
(see also Reinsch 1967; de Boor 2001).

Consider a function yi ≡ y(i) evaluated at n evenly
spaced7 points i = 1, . . . , n. We aim to find a function f(x)
that minimizes

p

n∑
i=1

(f(i)− yi)2 +

∫ n

1

dx (f ′′(x))2 (C1)

where p balances fidelity to the observed points and the smooth-
ness of the function, and is an input parameter. For appropriate
conditions8, the solution to this is a cubic spline, with points at
i = 1, . . . , n. Our goal therefore reduces to determining p and
fi ≡ f(i).

Craven & Wahba (1979) suggest a variation on cross-
validation to determine the value of p. In ordinary cross-
validation, one removes a point at a time from the data
and minimizes the squared deviation (over all points) of the
spline prediction for the dropped point from its actual value.
While conceptually straightforward, actually performing this
cross-validation is operationally cumbersome. Craven & Wahba
(1979) suggest a weighted variant of ordinary cross-validation
(generalized cross-validation), that both theoretically and exper-
imentally, has very similar behaviour, and is straightforward to
compute. We outline this method below.

The fi are determined from the yi by
f1
.
.
fn

 = A(p)


y1
.
.
yn

 (C2)

where A(p) is an n × n matrix that depends on p. Follow-
ing Reinsch (1967) and Craven & Wahba (1979), we construct
A(p) as follows :

(i) Construct the n × n − 2 tridiagonal matrix Q with the
following non-zero elements qi,i+1 = qi+1,1 = 1 and qii =
−2, where i = 1, . . . , n.

(ii) Construct the (n − 2) × (n − 2) tridiagonal matrix T
with non-zero elements tn−2,n−2 = tii = 4/3 and ti,i+1 =
ti+1,i = 2/3, with i = 1, . . . , n− 3.

(iii) Compute F = QT−1/2. Construct its singular value
decomposition F = UDVt with D a diagonal matrix with
n− 2 singular values di, and U and V being n× (n− 2) and
(n− 2)× (n− 2) orthogonal matrices respectively.

(iv) Define the n − 2 values zj by Uty, where y are the yi
arranged in a column vector as above. Define d̃i ≡ d2i /(d2i +p).

(v) The generalized cross-validation function V (p) is given

7 This condition is not necessary, but is what is relevant for our appli-
cation
8 Square integrability, and continuous second derivatives
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by

V (p) =
1

n

n−2∑
i=1

d̃2i z
2
i

/(
n−2∑
i=1

d̃i

)2

. (C3)

We minimize this function using a simple linear search in log p;
the minimum determines the value of p.

(vi) The cubic spline matrix is then given by I − A =
UD̃Ut, where D̃ is an (n − 2) × (n − 2) diagonal matrix
with d̃i on the diagonal.
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