Title
MULTIPARTITION BEHAVIOR OF n-p-> pX: A MULTIPERIPHERAL MODEL DESCRIPTION

Permalink
https://escholarship.org/uc/item/0p7753xd

Authors
Chan, Chun-Pai
Winkelmann, Frederick C.

Publication Date
1974-06-18
MULTIPLICITY BEHAVIOR OF $\pi^- p \rightarrow pX$
A MULTIPERIPHERAL MODEL DESCRIPTION

Chun-Fai Chan and Frederick C. Winkelmann

June 18, 1974

Prepared for the U. S. Atomic Energy Commission
under Contract W-7405-ENG-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
MULTIPICLITY BEHAVIOR OF $\pi^- p \to pX$: A MULTIPERIPHERAL MODEL DESCRIPTION

Chun-Fai Chan and Frederick C. Winkelmann

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

June 18, 1974

Abstract.—For the inclusive reaction $\pi^- p \to pX$, the average charged multiplicity $\langle n \rangle$ of the system X as a function of missing mass M^2 and momentum transfer t is studied in terms of a multiperipheral model. For $M^2 \gtrsim 20 $ GeV2 (above the low-mass pion diffraction region) and for $|t| \lesssim 1$ GeV2, the model is found to be in good agreement with data at 205 GeV/c, which show $\langle n(M^2,t) \rangle \sim \ln M^2$ for fixed t, and $\langle n(M^2,t) \rangle$ only weakly dependent on t for fixed M^2. Further experimental and theoretical investigation is suggested.

Introduction.—The multiperipheral model [1] has had considerable success in describing many features of multiparticle production at high energy. Here we apply a simple version of the model to the inclusive inelastic reaction

$$\pi^- p \to pX.$$ (1)

We study the behavior of the average charged multiplicity $\langle n \rangle$ of the produced system X as a function of M^2 and t, where M^2 is the mass-squared of X and t is the four-momentum transfer squared to the recoil proton. The model is shown to provide a good description of data at 205 GeV/c [2], which, for $M^2 \gtrsim 20 $ GeV2 and $|t| \lesssim 1$ GeV2, show $\langle n(M^2,t) \rangle \sim \ln M^2$ at fixed t, and $\langle n(M^2,t) \rangle$ approximately independent of t for fixed M^2.

*Work supported by the U. S. Atomic Energy Commission.
We first discuss some theoretical details and then compare model predictions with average multiplicity data for reaction (1). Although we specifically treat reaction (1), the model is applicable to the general class of reactions of the form \(a + p \rightarrow px\), as well as to reactions involving charge exchange at the nucleon vertex, such as \(a + p \rightarrow nX\) and \(a + p \rightarrow \Delta^+X\).

Multiperipheral Model. To obtain \(\frac{d\sigma}{dM^2 dt}\) for reaction (1) we make two basic assumptions:

(i) The \(M^2\) dependence of \(\frac{d\sigma}{dM^2 dt}\) can be described by a single Pomeron-pole term for sufficiently large values of \(M^2\).

(ii) The system \(X\) is produced mainly by a non-Pomeron exchange mechanism for \(M^2 \gtrsim 20\) GeV\(^2\), as suggested by the observed inclusive \(M^2\) distribution for reaction (1) at 205 GeV/c [2].

A detailed multiperipheral model embodying these assumptions has been described in ref. [3]. For the present, we employ a simplified version of this model which assumes that the system \(X\) is produced by pion exchange (ignoring G-parity restrictions). Although other exchanges are clearly possible, this simplified model predicts essentially the same \(M^2\) and \(t\) behavior for the average charged multiplicity of \(X\) as the more realistic model, and has the advantage of being calculationally considerably easier to use.

The inclusive differential cross section for reaction (1) for \(20\) GeV\(^2\) \(\lesssim M^2 \lesssim s\) is then

\[
\frac{d\sigma}{dM^2 dt} = \frac{g^2}{16\pi^2 s} \frac{1}{(t-m^2_r)^2} \frac{s_o}{s_o-t} \alpha^{\frac{1}{2}} \left(\frac{M^2}{s_o} \right)^\alpha.
\]

(2)

Here \(g^2\) is the effective coupling at the nucleon vertex, \(s\) is the center-of-mass energy squared, and \(\alpha\) is the intercept of the Pomeron pole. The last three factors represent the high-energy off-shell \(\pi\pi\) scattering amplitude; this form for the \(\pi\pi\) amplitude is suggested by an approximate analytic solution.
to the multiperipheral integral equation [4]. The factor \(\bar{\alpha} \) depends only on \(\alpha \), and \(s_0 \) is related to the squared masses of the prominent \(\pi \pi \) resonances (thus \(s_0 \approx 1 \text{ GeV}^2 \)).

We now calculate \(\langle n \rangle \), the average charged multiplicity of \(X \), as a function of \(M^2 \) and \(t \). Assuming \(\langle n \rangle \) is a constant fraction of the overall charged plus neutral multiplicity of \(X \), \(\langle n \rangle \) can be obtained from the inclusive differential cross section using [5,3]

\[
\langle n(M^2,t) \rangle = C \frac{d}{d\alpha} \frac{D(M^2,t)}{D(M^2,t)},
\]

where \(C \) is a constant related to the \(\pi \pi \) coupling strength and \(D(M^2,t) = \frac{d\sigma}{dM^2 dt} \). Inserting (2) we find

\[
\langle n(M^2,t) \rangle = C[\ln M^2 + \ln \left(\frac{s_0}{s_0 - t} \right)] + d,
\]

with \(d = C[\partial (\ln \bar{\alpha})/\partial \alpha - \ln s_0] \). Thus, for positive \(C \), \(\langle n(M^2,t) \rangle \) is predicted to increase logarithmically with \(M^2 \) at fixed \(t \), and to decrease very slowly with \(t \) for fixed \(M^2 \). Furthermore, \(\langle n(M^2,t) \rangle \) is predicted to be independent of \(s \). Although both constants \(C \) and \(d \) in (3) are calculable from the multiperipheral model, they depend strongly on the details of the model and we therefore choose to obtain them by fitting the data, as described below.

We now proceed, by integrating (3) with respect to \(t \) or \(M^2 \), to calculate two other quantities of interest. The average charged multiplicity at mass \(M^2 \) is

\[
\langle n(M^2) \rangle = \int \langle n(M^2,t) \rangle D(M^2,t) dt / \int D(M^2,t) dt = C[\ln M^2 + \varphi(u_m)] + d,
\]

where \(u_m \) is the minimum allowed \(|t| \) value for given \(M^2 \) and \(s \), and

\[
\varphi(u_m) = \ln \left[\frac{s_0}{s_0 + u_m} \left(\frac{u_m}{s_0 + u_m} \right) \right].
\]
The function $u_m(M^2)$ represents the Chew-Low boundary: for values of M^2 not too close to s, $u_m \approx (M^2/s)^2 m_P^2 (1 - M^2/s)^{-1}$, where m_P is the proton mass. When $M^2/s \ll 1$, u_m is close to zero and the term $\varphi(u_m)$ in (4) has negligible contribution. However, as M^2 and therefore u_m increases, $\varphi(u_m)$ gives a small negative contribution, so that for $s/2 \leq M^2 \leq s$, $\langle n(M^2) \rangle$ is predicted to deviate downward slightly from a simple M^2 dependence.

The average charged multiplicity of X as a function of t, for $M^2 > 20$ GeV2, is similarly obtained by integrating over M^2:

$$\langle n(t) \rangle = \int_{M_{\text{MIN}}^2}^{M_{\text{MAX}}^2} \langle n(M^2,t) \rangle D(M^2,t) dM^2 / \int_{M_{\text{MIN}}^2}^{M_{\text{MAX}}^2} D(M^2,t) dM^2 .$$

Here $M_{\text{MIN}}^2 = 20$ GeV2 and $M_{\text{MAX}}^2 \approx (s/2m_P^2)(-t)^{1/2}[(4m_p^2 - t)^{1/2} - (-t)^{1/2}]$, $\approx (s/m_P^2)(-t)^{1/2}$ for $-t \ll 4m_P^2$. Using $\langle n(M^2,t) \rangle$ as given by Eq. (3) we find

$$\langle n(t) \rangle = C \left[\frac{M_{\text{MAX}}^{\alpha+1} \ln M_{\text{MAX}}^2 - (M_{\text{MIN}}^{\alpha+1}) \ln M_{\text{MIN}}^2}{(M_{\text{MAX}}^{\alpha+1} - (M_{\text{MIN}}^{\alpha+1})} + \ln \left(\frac{s}{s - t} \right) - \frac{1}{\alpha+1} \right] + d . \quad (5)$$

For $-t \gtrsim 0.1$ GeV2, the M_{MIN}^2 terms in (5) can be neglected and we obtain, using $M_{\text{MAX}}^2 \approx (s/m_P^2)(-t)^{1/2}$,

$$\langle n(t) \rangle \approx C \left[\frac{(-t)^{\frac{3}{2}} s}{m_P^2 (s - t)} + \ln s - \frac{1}{\alpha+1} \right] + d . \quad (6)$$

Thus, for fixed s, $\langle n(t) \rangle$ is predicted to rise with $-t$ from $t = 0$, reaching a maximum at $-t = s_0 \approx 1$ GeV2.

Comparison with Data.—The data to be considered consist of 1566 inelastic events of reaction (1) at 205 GeV/c ($s = 385$ GeV2), observed in the Fermilab 30-inch hydrogen bubble chamber. The outgoing proton, identified by ionization, has momentum $\lesssim 1.4$ GeV/c. The quantities M^2 and t were calculated from measurements of the beam and recoil proton. Further experimental details are given in ref. [2].
In order to apply the present version of the multiperipheral model, we assume that the produced system X consists entirely of charged and neutral pions. We assume, furthermore, that the charged/neutral pion ratio is constant, so that the average charged multiplicity of X is a constant fraction of the average overall multiplicity of X. These assumptions are supported by a study of $\pi^- p \rightarrow K^0_s + \text{anything}$ and $\pi^- p \rightarrow \pi^0 + \text{anything}$ at 205 GeV/c [6] which suggests that the kaonic component of X is $\lesssim 10\%$, and that π^+, π^-, and π^0 are produced in approximately equal proportions.

Figure 1 shows $d\sigma/dM^2 dt$ as a two-dimensional scatter plot of M^2 vs t. (As discussed in ref. [2], the observed exponential falloff with t of $d\sigma/dt dM^2$ is such that biases introduced by the 1.4 GeV/c cutoff in proton momentum ($-t \leq 1.4$ GeV2) are negligible up to $M^2 \approx 180$ GeV2.) For fixed t, events extend in M^2 up to the Chew-Low boundary, $M^2_{\text{max}} \approx (s/m_p)(-t)^{1/2}$. The low-$t$ cluster of events which peaks at $M^2 \approx 2$ GeV2 is produced by diffraction dissociation of the incoming pion [2]. In the following, pion diffraction dissociation (i.e., production of the system X in reaction (1) via Pomeron exchange) is assumed to be unimportant for M^2 above 20 GeV2.

M^2-Dependence.—Figure 2 shows the average charged multiplicity, $\langle n(M^2) \rangle$, of the system X for all t values combined (solid circles). In agreement with the model, $\langle n(M^2) \rangle \sim \ln M^2$ for $M^2 \gtrsim 10$ GeV2. Fitting $\langle n(M^2) \rangle$ over the region $20 < M^2 < 180$ GeV2 using Eq. (4) without the small $\varphi(u_m)$ term, we find $\langle n(M^2) \rangle = C \ln M^2 + d$ with $C = 1.3 \pm 0.1$ and $d = 0.3 \pm 0.3$, as shown by the straight line in Fig. 2.

Figure 2 also gives $\langle n(M^2, t) \rangle$ vs M^2 for $-t = 0.0-0.1$, 0.1-0.3, and 0.3-0.7 GeV2. The behavior of $\langle n(M^2, t) \rangle$ for each of these t-intervals is similar, indicating at most a weak t-dependence.

t-Dependence.—Figure 3 shows $\langle n \rangle$ as a function of t for $M^2 < 20$ GeV2 (pion diffractive region) and for $M^2 > 20$ GeV2. We observe that $\langle n(t) \rangle$
for the $M^2 < 20$ GeV2 region is nearly constant for $-t \lesssim 0.4$ GeV2 and may be rising at higher t. On the other hand, for $M^2 > 20$ GeV2, $\langle n(t) \rangle$ rises rapidly for $-t \lesssim 0.1$ GeV2, and increases slowly for $0.1 \lesssim -t \lesssim 1$ GeV2; the depression of $\langle n(t) \rangle$ at small t is a Chew-Low boundary effect.

The solid curve in Fig. 3 is the prediction for $M^2 > 20$ GeV2 using Eq. (6) with $s_0 = 1$ GeV2 and $\alpha = 1$, and with $C = 1.3$, $d = 0.3$ (as determined from the above fit to $\langle n(M^2) \rangle$). Good agreement with the data is observed. The prediction is not sensitive to the precise value of α. Using an effective Pomeron [7] with an intercept of 0.85, for example, would shift the entire curve downward by only 0.05 units.

To investigate the t-dependence of $\langle n(M^2, t) \rangle$ at fixed M^2, we show in Fig. 4 $\langle n \rangle$ vs t for several representative small intervals in M^2 above the pion diffractive region. In general, we find that $\langle n \rangle$ at fixed M^2 is nearly independent of t for $-t \lesssim 1$ GeV2. The solid curves in Fig. 4 are the predictions of Eq. (3) with $s_0 = 1$ GeV2, again using the previously determined values of C and d. Reasonable agreement with the data is observed.

Conclusions.—We have shown that the average charged multiplicity data for the reaction $\pi^- p \to pX$ at 205 GeV/c can be reasonably understood with a simple version of the multiperipheral model for $20 \lesssim M^2 \lesssim 200$ GeV2 and $|t| \lesssim 1$ GeV2. It would clearly be of interest to extend the present multiperipheral analysis to higher values of s, M^2, and $|t|$; to the higher multiplicity moments of X, such as f_2 and f_3; and to other reactions of the form $a + p \to pX$.

We would like to thank the members of the Fermilab-LBL-UCB 205 GeV/c $\pi^- p$ collaboration for making available their data and for helpful comments.
REFERENCES

 W. B. Fretter, C. E. Friedberg, G. Goldhaber, W. R. Graves, A. D. Johnson,
 J. A. Kadyk, L. Stutte, G. H. Trilling, G. P. Yost, D. Bogert, R. Hanft,

[6] D. Ljung, Proceedings of the APS Division of Particles and Fields Meeting,
 D. Bogert et al., Inclusive γ, K_s^0, Λ^0 and $\bar{\Lambda}^0$ Production in 205 GeV/c π^-p

FIGURE CAPTIONS

Fig. 1. Two-dimensional plot of missing mass (M^2) vs momentum transfer (t) for 1566 inelastic events of the reaction $\pi^- p \rightarrow pX$ at 205 GeV/c. A cutoff of 1.4 GeV/c in the recoil proton momentum limits $-t$ to ≤ 1.4 GeV2.

Fig. 2. Average charged multiplicity ($\langle n \rangle$) as a function of M^2 for $-t < 1.4$ GeV2 (solid circles). The straight line is the functional form $\langle n \rangle = C \ln M^2 + d$ predicted by the multiperipheral model, with fitted parameters $C = 1.3 \pm 0.1$ and $d = 0.3 \pm 0.3$ for $20 \leq M^2 \leq 180$ GeV2. Also shown is $\langle n \rangle$ vs M^2 for three smaller intervals of momentum transfer: $0 < -t < 0.1$ GeV2 (open circles), $0.1 < -t < 0.3$ GeV2 (squares), and $0.3 < -t < 0.7$ (triangles).

Fig. 3. Average charged multiplicity ($\langle n \rangle$) vs t for $M^2 < 20$ GeV2 (open circles) and for $M^2 > 20$ GeV2 (solid circles). The curve is the prediction of the multiperipheral model for $M^2 > 20$ GeV2.

Fig. 4. Average charged multiplicity ($\langle n \rangle$) vs t for $M^2 = 20-40$, 60-80, 100-120, and 140-160 GeV2. The curves are the predictions of the multiperipheral model.
Fig. 1
Fig. 2
Fig. 3

\[M^2 > 20 \text{ GeV}^2 \]

\[M^2 < 20 \text{ GeV}^2 \]

\[V_n(t) \]

\[-t \text{ (GeV}^2) \]

XBL 745-3185
\[M^2 = 170 \text{ GeV}^2 \]

\[M^2 = 110 \text{ GeV}^2 \]

\[M^2 = 50 \text{ GeV}^2 \]

\[M^2 = 30 \text{ GeV}^2 \]
LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.