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Abstract: Whether or not an external force can make a trapped particle
escape from optical tweezers can be used to measure optical forces.
Combined with the linear dependence of optical forces on trapping power,
a quantitative measurement of the force can be obtained. For this measure-
ment, the particle is at the edge of the trap, away from the region near the
equilbrium position where the trap can be described as a linear spring. This
method provides the ability to measure higher forces for the same beam
power, compared with using the linear region of the trap, with lower risk
of optical damage to trapped specimens. Calibration is typically performed
by using an increasing fluid flow to exert an increasing force on a trapped
particle until it escapes. In this calibration technique, the particle is usually
assumed to escape along a straight line in the direction of fluid-flow. Here,
we show that the particle instead follows a curved trajectory, which depends
on the rate of application of the force (i.e., the acceleration of the fluid
flow). In the limit of very low acceleration, the particle follows the surface
of zero axial optical force during the escape. The force required to produce
escape depends on the trajectory, and hence the acceleration. This can result
in variations in the escape force of a factor of two. This can have a major
impact on calibration to determine the escape force efficiency. Even when
calibration measurements are all performed in the low acceleration regime,
variations in the escape force efficiency of 20% or more can still occur. We
present computational simulations using generalized Lorenz–Mie theory
and experimental measurements to show how the escape force efficiency
depends on rate of increase of force and trapping power, and discuss the
impact on calibration.

© 2015 Optical Society of America

OCIS codes: (140.7010) Laser trapping; (350.4855) Optical tweezers or optical manipulation.
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1. Introduction

Since the development of optical tweezers [1], there has been widespread application of non-
contact trapping and manipulation in biology and other fields. Beyond this, they offer the oppor-
tunity to quantitatively measure forces on the order of piconewtons on a microscopic scale [2],
and have proven to be a valuable tool in a broad range of experimental biophysics applica-
tions. In the typical mode of operation, the force is determined by either measuring the position
of the particle within the trap using a camera, or by measuring the deflection of the forward
scattered (i.e., transmitted) light using a quadrant photodiode (QPD) or position sensitive de-
tector (PSD) [3]. In either case, it is necessary to calibrate the trap. If the particle remains close
enough to the equilibrium position in the trap (region A of the force–position curve in Fig. 1),
the trap can be treated as a Hookean (i.e., linear) spring. In this case, the calibration consists
of determining the spring constant of the trap, and it is not necessary to determine the entire
force–position curve. Various well-established methods are available for this task [4–7]. This
ease of calibration is a major factor in the popularity of restricting force measurements to the
linear region of the trap.

However, this is not the only mode in which forces can be measured with optical tweezers.
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Fig. 1. Simulation showing regions of the force–position curve commonly used for force
measurement with optical tweezers. The most common choice is the linear region A near
the equilbrium, where the trap is approximately a Hookean spring. The maximum radial
force region B allows higher forces to be measured for the same beam power, and at the
same time reducing the risk of optical damage to live specimens.

It is also possible to use the maximum force portion of the force–position curve (region B in
Fig. 1). This maximum force is the radial trap strength, and (radial) escape from the trap indi-
cates that the forces exceed the trap strength. We can describe the linear relationship between
the optical force F and the power of the trapping beam by introducing the dimensionless force
efficiency Q, where

F =
nQ
c

P, (1)

where P is the beam power at the trap and n is the refractive index of the surrounding medium,
and c is the speed of light in free space. This Q is dimensionless and scales linearly with
power. Since this relationship also applies to the trap strength, the magnitude of the radial force
required to escape (radially) from the trap, Fesc, is

Fesc =
nQesc

c
P. (2)

For escape force measurements of this type, calibration consists of finding Qesc, which is typ-
ically done by using fluid flow to exert an increasing force on the particle until the particle
escapes [8]. By varying the power, the minimum power required to keep the particle within
the trap gives a quantitative measurement of the force. One advantage of this mode of force
measurement is that much larger forces can be measured for the same beam power, compared
with using the linear region of the trap, and at the same time reducing the likelihood of optical
damage to live specimens.

Since the optical force is proportional to the beam power, we expect to obtain a linear rela-
tionship between the the spring constant or the escape force and the power if we calibrate the
trap for different beam powers, as can be inferred from Eq. (2). That is, we expect to obtain
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a constant Qesc, independent of the power. A series of escape force calibration measurements
were performed for spheres for the validation of an escape force calibration that was done for
trapped isolated mammalian chromosomes [9, 10]. The results showed, contrary to the power
independence hypothesis of Qesc, a clear dependence on the power [11].

In a three dimensional optical trap, the axial component of the optical force has a zero force
(stable trapping) surface; due to the change in relative back-scattering of light it must also be
curved [12]. If a particle moves radially, it will also move axially due to a reduction in gradient
force relative to the scattering force. Thus the escape of such particles cannot be along a straight-
line purely radial trajectory—displacements in one axis cause displacements in another. The
rate at which the external force which moves the particle away from the beam axis is applied
is a key factor determining the trajectory; this is shown in Fig. 2. If the force is applied slowly,
the trajectory of the particle closely follows the zero-force surface (the black curve maked
“Slow”, and the white region behind it and mirroring it on the left, in Fig. 2). If the force is
applied rapidly, the trajectory will be close to a straight line in the direction of the applied force.
Between these limits, the particle will escape on a trajectory lying between these extremes.

Since the optical force is a complicated three-dimensional function of position within the
trap, the particle experiences different optical forces along these different trajectories. There-
fore, the forces required to produce escape along different trajectories will vary. Such variations
in the escape force have been seen previously [13, 14]. Considering the different forces seen
along these extreme trajectories, we might expect a variation of a factor of two, with direct
horizontal escape (i.e., rapidly applied escape force) resulting in doubling of the escape force
compared with slowly applied forces. We present computational simulations using generalized
Lorenz–Mie theory and experimental measurements to show how the escape force efficiency
depends on rate of increase of force and trapping power, and discuss the impact on calibration.
Notably, even if calibration and measurement are all performed in the low rate of increase of
force, low escape force efficiency regime, variations in the escape force efficiency of 20% or
more can still occur.

2. Simulations

The goal of our simulations is to model the escape of particles from a trap due to a viscous drag
force that changes in time. This models the escape force calibration of an optical trap using a
stage undergoing constant acceleration to provide the escape force, through associated motion
of the fluid surrounding the particle. The fluid is assumed to move together with the stage, with
the same instantaneous velocity. Simulations allow us to explore the behaviour of the system
over a wide range of parameters, including values inaccessible through available experimental
apparatus. In addition, the optical forces in the simulated trap are known a priori, allowing
comparison of the simulated calibration results and the optical forces. To simulate the motion
of the particle within the trap, we solve Langevin’s equation using Euler’s method [15–17],
with a time-varying escape force.

The escape of a trapped particle can be simulated by considering the effect of a force acting
on the particle. At the low Reynolds numbers encountered in optical tweezers, the velocity of
a sphere moving through a fluid is such that the driving force fflow is in equilibrium with the
viscous drag force, such that

fflow = Γv = 6πηrv, (3)

where η is the (temperature dependent) viscosity of a classical Newtonian fluid (such as water),
r is the radius of the particle and v is the velocity of the stage, which creates the fluid flow.
Here, we have made the substitution Γ = 6πηr, but in general, Γ is a tensor. For chiral objects
this tensor will also couple rotational to translational degrees of freedom. Here, we will deal
with just the spherical case, but the outlined simulation method can be applied to more general
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Fig. 2. Simulation showing that escape trajectories depend on the rate at which the force
causing escape is applied. Extreme escape trajectories are shown for an optical trap, with
the trapping beam propagating vertically upwards, and escape force applied horizontally to
the right. The colour map shows the axial forces of the optical trap. One extreme case is a
very rapid application of the escape force, when the particle escapes from the trap before
the optical forces have time to move the particle significantly in the vertical direction.
In this case, the escape trajectory is a horizontal straight line. The other extreme case is
very slow application of the escape force, when the particle will follow a trajectory such
that the vertical (i.e., axial) optical forces is zero. In this case, the trajectory lies on the
(mathematical) surface where the vertical optical forces are in equilibrium, shown in white.
Real trajectories will lie between these two extreme cases; if the escape forces are applied
rapidly or slowly, the trajectory will be close to one of these extreme cases.
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objects [15]. If the surface of the coverslip or slide is close enough to matter, the increase in
viscous drag can be calculated using Faxén’s correction [18] or the exact solution [19].

Due to the linearity of the equations describing fluid flow and forces resulting therefrom
at very low Reynolds numbers, viscous drag resisting motion due to the optical force can be
treated separately from the viscous drag applied by acclerating motion of the stage (the escape
force). The escape force is

fesc = ΓV = 6πηrV = 6πηrta, (4)

where V is the stage velocity when the particle escapes the trap, a is the acceleration of the
stage. Here, we assume that the stage is at rest until t = 0, when it begins to move with constant
acceleration. For t < 0, fflow = 0, and afterwards, the flow force increases over time independent
of space.

The optical force is a function of position, and is calculated using generalized Lorenz–Mie
theory with our Optical Tweezers Toolbox [20]. We also include the weight fw and buoyancy fb

of the particle as forces; these are independent of time and position.
Simulations are performed using discrete time steps, with the forces calculated at step i,

corresponding to time t = ti, as a function of the current position xi and particle and stage
velocities vi and Vi. The position of the particle at the next step, i+ 1, is found using Euler’s
method:

xi+1 = xi +Γ−1 (fflow(ti)+ fo(xi)+ fw + fb)Δt, (5)

where Δt = ti+1 − ti.
It is straightforward to include Brownian motion, as a random spatial motion, with proba-

bility distribution dependent of the duration of the time step, Δt [16]. Since we are simulating
the escape of relatively large spheres, Brownian motion will not substantially affect the simu-
lations. After trial calculations to confirm that Brownian motion could be ignored, simulations
were performed without including it.

The particle position and velocity and the optical force were recorded for each time step
during the simulation. The experimental escape force calibration used a camera to recored
the position of the particle, and found the escape fluid velocity and force from these position
measurements. Similarly, the particle position in the simulation was used to find a simulated
escape force. The escape force was then compared with the actual optical forces during the
escape.

3. Experiments

Experimental measurements were performed in two different laboratories. In the laboratory at
Brisbane, Queensland, Australia, the experiment was performed with an optical tweezers setup
using a computer-controlled piezo-electric stage (PI-563.3CD, Physik Instrumente) operating
in closed-loop mode and controlled with a PCI card (PI-751E, Physik Instrumente). The trap-
ping laser was a power and polarisation-stabilised ytterbium-doped fibre laser (YLM-5-LP, IPG
Photonics) with output wavelength of 1070 nm, which underfills a numerical aperture NA= 1.3
microscope objective (Zeiss Plan Fluor EC100) to trap 4.5 μm diameter polystyrene spheres
(Polysciences Pty. Ltd.). The method consisted of accelerating the stage at a constant rate until
the sphere escaped the optical trap at a radiant laser power estimated at about 10 mW at the
focus. Due to the underfilling of the objective, the convergence of the beam was that of a beam
optimally filling (i.e., truncated where the irradiance falls to 1/e2 of the central irradiance of
the Gaussian profile) an objective with NA � 1.0. The results from this investigation are shown
along with simulations in Fig. 3.

The optical tweezers experiment at Irvine, CA, USA, has been described in [10]. The trap-
ping laser was a 1064 nm ytterbium fiber laser (PYL-20M, IPG Photonics), focussed by a
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high numerical aperture (NA = 1.4) oil immersion, Phase III, 100× objective (Zeiss Plan-
Apochromat). Since trapping was performed far from the coverslip, the trap was affected
by aberrations, and comparison of simulations and experimental measurements showed that
the trap could be modelled as a trap produced by focussing the beam with an objective of
NA = 0.8, without aberrations. A microstepper-motor driven stage for inverted microscopes
(Ludl Electronic Products, BioPrecision2, NY, USA) was used to move the stage, controlled
by the LabView (LabView 8.5.1, National Instruments, TX, USA) based RoboLase III sys-
tem software [21]. The method consisted of accelerating the stage at a constant rate until the
sphere escaped the optical trap. Sets of experiments were run for 4.5 μm and 10 μm diameter
polystyrene spheres in methyl cellulose solution with viscosities of 1, 3 and 7 cP, with stage
acceleration of 1×10−6ms−2 and radiant laser power of 25–60 mW.

On both sets of apparatus, the trapping beam is propagating upwards, and the fluid flow
produced by movement of the stage is horizontal. Position measurements of particles are per-
formed using a camera imaging the particle, with image analysis providing the coordinates of
the center of the particle for each frame.

4. Results and discussion

The position and velocity resulting from a simulation of a plausible escape scenario are shown
in Fig. 3. As the drag force due to the motion of the stage increases as the stage accelerates,
the displacement of the particle from the beam axis (i.e., the radial equilibrium position of the
trap) slowly increases. When the particle escapes from the trap its velocity transitions to match
the velocity of the surrounding fluid (i.e., the stage velocity). The change of velocity from the
trapped to free floating regime can be used to determine the time of escape. The stage velocity
at the time of the escape nominally gives the drag force at the time of escape, which should be
approximately equal to the escape force.

In Fig. 4, we show trajectories of a 4.5 μm diameter polystyrene sphere as it escapes from a
5 mW trap. The optical force in the a) axial (z) and b) radial (x) directions is shown in the back-
ground. Each trajectory corresponds to a different stage acceleration. For low accelerations, the
trajectory is close to the zero axial force contour. For high accelerations, the escape trajectory
is closer that of the direction of the applied drag. The optical forces experienced by the particle
along each trajectory are different due to the time it takes for the particle to reach dynamic
equilibrium with the changing forces.

If we compare the forces encountered along the escape trajectory with the radial force–
position curve (Fig. 5), we can see how lower accelerations reduce the maximum radial optical
force that can be exerted by the trap [13, 14]. As the acceleration increases, the optical force
during the escape approaches the straight-line radial force–position curve.

Figure 6 shows the transition between the high acceleration, high escape force regime, and
the low acceleration, low escape force regime. For the smaller particles considered (diameter
of 4.5 μm), the transition is similar for different powers. For the larger particles (diameter of
10 μm), the curves for the escape force efficiency differ by much more. As a result, even if es-
cape force measurements for different powers are all performed in the low acceleration regime,
the escape force efficiency will depend on the power. This slight power dependence can be seen
in the experimental measurements shown in Fig. 7.

Since the maximum radial forces depend on the stage acceleration, different accelerations
lead to different measurements of the escape force efficiency Qesc. In Fig. 6, we scale the re-
sults by the ratio of the square of the power to the acceleration, which implies a constant of
proportionality between the external force, optical force and the escape trajectory. However,
due to the time it takes the particle to reach dynamic equilibrium the power normalised curves
qualitatively match but do not coincide. For larger particles dynamic equilibrium is reached
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Fig. 3. Experiment and simulation of escape of a 4.5 μm diameter polystyrene sphere,
trapped by 10 mW 1070 nm laser beam focussed by a numerical aperture NA = 1.3 objec-
tive. a) Position of particle. The stage position is shown with an offset so that the stage and
particle are shown at the same position after escape. b) Averaged velocity of particle over
15 data points. As the stage velocity is increased the the particle will be displaced from the
trap by the viscous drag force. The particle escapes around the point the particle velocity
changes behaviour such that it begins to approach the fluid velocity. The particle moves
rapidly away from the trap, at the velocity of the surrounding fluid (i.e., the stage velocity).
c) Simulated position. d) Simulated velocity. Due to the lag introduced by dynamics, the
maximum optical trap force (×) is not coincident with the local minimum velocity prior to
escape (◦). Thus one cannot exactly know what the escape force is using only the particle
position data.

even more slowly and thus the overlap is degraded further, thus there is a variation with power
in the measured Qesc even if all measurements are in the low acceleration regime.

Further variation is provided by the effect of weight and buoyancy. The zero axial force sur-
face in the trap is where the total axial force, which includes weight and buoyancy, is zero.
While the optical forces will change when the power changes, the weight and buoyancy will
not, and the zero axial force surface will shift. Therefore, the escape trajectories will differ,
and different escape forces can result. For low powers and large particles, this variation in the
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Fig. 4. Simulation showing the optical force field and the escape trajectories of a 4.5 μm
diameter polystyrene sphere as it escapes from a 5 mW trap in water. Escape trajectories are
shown for different stage accelerations. For low accelerations, the trajectory lies close to
the zero axial force contour, and for high accelerations, it lies close to a straight horizontal
line. The crosses mark the peak force, escape force, which correspond to the point of escape
for each of the trajectories. The low acceleration particles escape by overcoming the axial
trapping force, rather than the radial (x) trapping force. As the particle moves away from
the beam axis, it moves upwards. At the radius where escape occurs, the particle ceases to
be axially trapped. For high accelerations, escape occurs when the fluid flow force exceeds
the maximum radial force encountered along the trajectory. These escapes of the particles
along the different trajectories leads to different escape forces, as can be read from the x-
force strength at the point of escape marked by the cross. Note that the sign of this radial
force is negative as it points towards the centre of the trap, which is in the negative direction.
The zero on the coordinates refers to the position of the focus: the equilibrium trapping
position, before applying external fluid flow force, being beyond the focus.
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Fig. 5. Simulation showing optical force during escape. The radial normalised optical force
efficiency, Qx, encountered during the escape is shown for a range of stage accelerations,
that is, over a range of rates of applying the external fluid flow force, which correspond
to the escape trajectories shown in Fig. 4. This is compared to the force acting on the
particle which has an escape trajectory directly out of the trap in the x-direction. The low
acceleration trajectories have lower maximum radial forces than if the particle was to go
directly in the x-direction. This trap and particle are the same as for Fig. 4.

zero axial force surface can be large. The effect of weight and buoyancy on the escape trajec-
tories, and the radial forces during escape, are shown in Fig. 8, for 10 μm diameter polystyrene
spheres trapped in water by a 5 mW 1064 nm laser beam focussed by a numerical aperture
NA = 0.8 objective. For this particle and power, the effect of weight and buoyancy can produce
a difference of 17% in the escape force efficiency in the low acceleration regime, and 6% in
the high acceleration regime, comparing an upward-propagating trap with weight opposing the
axial scattering force with a trap neglecting the effect of weight and buoyancy.

This provides a good explanation for the variation in Qesc seen in [10]. The larger a particle is,
the more drag (∝ r) and less optical trap stiffness (∝ 1/r) it experiences, and the more influence
weight and buoyancy have (∝ r3), creating a situation where variations between trajectories
for different powers due to time taken to approach equilibrium are roughly proportional to r2,
and variations due to weight are roughly proportional to r4. The simulations and corresponding
experimental measurements of escape force have variations characteristic to following the zero
axial force surface. These measurements are shown in Fig. 7. Deviations between the two are
due to difficulty in precisely determining all the parameters to incorporate into the simulation.

Some of our data shown in Figs. 6 and 7 have been previously published [10, 11]. Here we
include some of these data along with the new data for the purposes of clarity and to add context
to our conclusion.

#246249 Received 21 Jul 2015; revised 28 Aug 2015; accepted 30 Aug 2015; published 8 Sep 2015 
(C) 2015 OSA 21 Sep 2015 | Vol. 23, No. 19 | DOI:10.1364/OE.23.024317 | OPTICS EXPRESS 24326 



10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

acceleration/power2 (kg−2m−3s4)

E
sc

ap
e 

Q

 

 

5 mW
10 mW
25 mW
50 mW

10 μm particle

4.5 μm particle

Fig. 6. Simulation showing the transition from low acceleration, low Qesc region to high
acceleration, high Qesc region, for 4.5 μm and 10 μm diameter polystyrene spheres trapped
in water by a 1064 nm laser beam focussed by a numerical aperture NA = 0.8 objective.
The curves for different trapping powers do not overlap, and this non-overlap is larger for
larger particles. This results in variations in Qesc even if all measurements are in the low
(or high) Qesc regime.

5. Conclusion

We have shown that consistent with [13, 14] the variation of escape trajectories with stage
acceleration and/or trapping power can result in variation of escape force efficiency Qesc of up
to a factor of two. Calibration by determining the spring constant at the equilibrium position is
not even approximately accurate for escape force estimates, nor is it sufficient to calibrate the
forces in a static external force field if practical measurements involve time dependent external
forces. We have shown that in principle it is possible to account for the variation of escape
force in time dependent external field, but this requires a sufficiently detailed knowledge of
the optical potential. In order to avoid very large errors, it is important to consider whether the
low acceleration, low Qesc regime, or the high acceleration, high Qesc regime is appropriate
for calibration. This is not only a matter of considering the rate at which an increasing force
is applied to trapped particles to produce escape, but also a matter of the vertical mobility
of the particle. If, for example, adhesion forces between the trapped particle and a surface
are being measured, the particle might not be free to move vertically to follow the zero axial
force surface, even if the rate at which the force is increased is very low. In this case, the high
acceleration regime will be more appropriate. Even if the calibration and force measurements
are all performed in the low acceleration, low Qesc regime (or the high acceleration, high Qesc
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Fig. 7. Comparison of simulated (circles, ◦) and experimental (crosses, ×) escape force
(Qesc) for a) 4.5μm and b) 10μm diameter polystyrene particles in methyl cellulose solution
with viscosities of 1 cP, 3 cP and 7 cP.
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Fig. 8. Effect of weight and buoyancy on escape trajectories and forces for 10 μm diameter
polystyrene spheres trapped in water by a 5 mW 1064 nm laser beam focussed by a nu-
merical aperture NA = 0.8 objective. Three cases are shown: an upward-propagating trap
where the weight opposes the axial scattering force, a downward-propagating trap where
the weight acts in the same direction as the axial scattering force, and a trap with zero
weight and buoyancy. As the power increases, the zero axial force surface will approach
this zero weight and buoyancy case. (a) Zero axial force surfaces. These are the trajectories
for escape with very low accelerations. For very high accelerations, the trajectories will be
straight horizontal lines, with heights depending on the weight and buoyancy. (b) Radial
force for very low accelerations. (c) Radial force for very high accelerations.
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regime), variation of 20% or more in Qesc can still occur.
At the very least, the physical effects we have explored need to be considered when estimat-

ing the experimental uncertainty in force measurements involving dynamic external forces. If
the resulting uncertainty would be undesirably large, steps can be taken to mitigate this. Some
possibilities are:

1. Observe the acceleration encountered during the escape, and perform a post-
measurement calibration with this acceleration.

2. Observe the height of the particle at escape, and, from escape calibration at different
accelerations (and therefore escape heights) and/or computational modelling, use the ap-
propriate escape height dependent Qesc to determine the escape force.

3. Since the main variation in escape force is due to the different radial distances that the
particle can escape at—the force–position curves shown in Fig. 5 are similar before es-
cape occurs—the escape force can be estimated with reasonable accuracy from the radial
position at escape. The force–position curve can be measured using an escape at the
highest available acceleration, from the variation of position with time.

4. Direct, but approximate, measurement of the optical forces during the escape using a
calibrated position sensitive detector (PSD) or some other detector such as a camera [22].
This can be unreliable for large or high-refractive index [22] particle force measurements
due to the reliance on the complete collection of scattered light, and aberrations or nearby
surfaces can interfere with such optical force measurements.

We have demonstrated important effects and strategies not commonly considered in optical
tweezers experiments. Consideration of these effects and strategies may explain a number of
inconsistencies observed in experiments involving the escape from or near the limit of an optical
trap.
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